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Abstract

This paper addresses the problem of detecting people and vehicles on a surface mine by
presenting an architecture that combines the complementary strengths of deep convolutional
networks (DCN) with cluster based analysis. We highlight that using a DCN in a naive
black box approach results in a significantly high rate of errors due to the lack of mining
specific training data and the unique landscape in a mine site. In this work we propose a
background model that exploits the abundance of background-only images to discover the
natural clusters in visual appearance using features extracted from the DCN. Both a simple
nearest cluster based background model and an extended model with cosine features are
investigated for their ability to identify and suppress potential false positives made by the
DCN. Furthermore, localisation of objects of interest is enabled through region proposals,
which have been tuned to increase recall within the constraints of a computational budget.
Finally, a soft fusion framework is presented to combine the estimates of both the DCN and
background model to improve the accuracy of the detection. Our system is tested on over
11km of real mine site data in both day and night conditions where we were able to detect
both light and heavy vehicles along with mining personnel. We show that the introduction
of our background model improves the detection performance. In particular, soft fusion of
the background model and the DCN output produces a relative improvement in the F1 score
of 46% and 28% compared to a baseline pre-trained DCN and a DCN retrained with mining
images respectively.

1 Introduction

While the mining industry pushes for greater autonomy, there still remains a need for human presence
on many existing mine sites. This places significant importance on the safe interaction between human
occupied and remotely operated or autonomous vehicles. In particular, for reliable collision avoidance it is
necessary to maintain sufficient situational awareness. To improve the situational awareness in regards to
collision avoidance, this work investigates computer vision based techniques for detecting other vehicles and
personnel in the workspace of heavy vehicles such as haul trucks.

Traditionally, methods for detecting other vehicles and personnel from heavy mining equipment have relied
on radio transponder based technologies. Despite transponder based sensors being mature and reliable for
ideal conditions, in practise their reliability is circumvented by practical issues around their two way active
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nature, portable power requirements, limited spatial resolution and human error. In contrast, computer
vision techniques for object detection aim to recognise the presence of other objects by observing a video
camera feed. This offers a unique alternative that operates passively and can utilise the available cameras on
existing vehicles. Furthermore, it is expected that reliable collision avoidance systems would utilise multiple
sensing technologies to provide a high integrity solution with redundancy.

Detecting and recognising objects has long been a topic of research within the computer vision community,
which has advanced tremendously in recent years as measured by standard benchmarks (Deng et al., 2009;
Lin et al., 2014). These major advancements can be largely attributed to both the availability of huge
annotated datasets (Fei-Fei et al., 2007; Torralba et al., 2008; Deng et al., 2009; Lin et al., 2014) and
developments in data driven models such as deep convolutional networks (DCN) (Krizhevsky et al., 2012;
Sermanet et al., 2013). A DCN effectively models visual appearance through a huge set of parameters
which are tuned by training on a large set of annotated images with relevant objects of interest. In this
work we utilise the DCN of (Krizhevsky et al., 2012) which has shown astonishing performance on the
ImageNet recognition benchmark (Deng et al., 2009) and repurpose it toward recognising personnel and
vehicles from the background in an open pit mining environment. However, naively applying an off-the-shelf
DCN to images collected in a mining environment results in a significant number of false positives due to
the differences in appearance between the training set and the target domain. See Figure 1.

Adapting DCNs to different domains typically requires a large training set relevant to the target domain
(Zeiler and Fergus, 2013; Yosinski et al., 2014). When the amount of training data is small, data driven
approaches tend to over-fit the training samples and not generalise to unseen images. In this work we utilise
a pre-trained DCN using millions of images from ImageNet and experiment with both a naive remapping of
ImageNet to mining classes and compare this to retraining the network with limited data.

With a vehicle mounted camera the focal length is fixed and the viewing angle is rigidly coupled to the
vehicle’s orientation. This distinguishes it from the ImageNet recognition problem where typical images
collected were implicitly pointed at regions of interest and appropriately zoomed. Additionally, due to the
wide field of view the majority of the images are background with zero to potentially multiple objects of
interest visible in any given frame. To address these multi-scale and object localisation issues, we employ
a similar strategy to (Girshick et al., 2014) by applying an initial step for finding likely object locations
through a region proposal process before performing object recognition with the DCN.

Given that the majority of images collected on a mine site contain zero objects of interest, we can efficiently
collect a huge amount of background data suitable for training a linear classifier. Using this newly trained
classifier in conjunction with the DCN ensures robustness and drastically reduces spurious detections. This
classifier is based on k-means clustering offering a convenient way to implicitly partition the background data
into different categories. This approach accurately captures the characteristics of the background, enabling
the discovery of novel non-background objects. In light of this, two approaches are presented for using this
background model to either suppress false background detections or to correct the detection confidence.

Building off the preliminary work in (Bewley and Upcroft, 2015), this article presents an alternative fusion
framework where hard decisions on suppressing background are replaced with a soft probabilistic model. This
enables a soft fusion between the likelihood a sample was generated from the novel background model and
the class prediction probability produced by the DCN classifier. Furthermore, various stages of the pipeline
proposed in (Bewley and Upcroft, 2015) have been optimised to increase either the recall or precision in
order to improve the overall detection performance. Additionally, a new method for discriminating between
background and novel objects is proposed and incorporated to the fusion framework. Finally, a thorough
examination of each component both individually and jointly is performed to highlight the major contributing
factors and gain insight into how the vision based detector behaves in a mine site environment.

This paper is organised as follows: Section 2 provides a short review of related literature in the areas of mine-
site sensing, pedestrian and general object detection, and information fusion. Section 3 describes the various
steps in our approach including analysis for region proposals, adapting DCNs, formulation of the background
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Figure 1: An example of the number of false positives when applying a DCN off-the-shelf in a mining
environment. The colours represent different classes, e.g. person (red) and vehicle (green). The only true
positive is the light vehicle on the left in the bottom image. Best viewed in digital form.



novelty detector, and information fusion. In Section 4 the detection performance of the proposed method is
analysed on a challenging set of mining videos. Finally, Section 5 concludes the paper with a summary of
the learnt outcomes and discussion for future improvement.

2 Related Work

Here we briefly review object detection methods that are not reliant on two way communication before
covering some related work using DCN for generic object detection. Early work has focused on range based
techniques such as LiDAR (Roberts and Corke, 2000; Marshall and Barfoot, 2008) commonly used for
mapping fixed obstacles such as buildings or underground tunnel walls. Applying these sensors to detecting
personnel and vehicles fitted with retro-reflectors is found to be sensitive to the dynamics of the sensor
platform (Phillips et al., 2013). In this work we focus specifically on detecting potentially dynamic obstacles
including vehicles and particularly people from vision based data. To this end, the more relevant prior work
is that of (Mosberger and Andreasson, 2012) which exploits the standardised requirement for personnel on
mine sites to wear high-visibility clothing equipped with retro-reflector patches. This enables a single IR
camera with active flash to highlight personnel in view which can then be used for tracking (Mosberger
et al., 2013). In this work, we do not restrict the detection system to specifically finding retro-reflectors,
but rather formulate the problem as a recognition task focusing on the overall appearance of personnel and
mining vehicles.

Pedestrian detection using computer vision techniques is an actively researched topic (Dalal and Triggs,
2005; Dollar et al., 2009; Benenson et al., 2013; Dollar et al., 2014; Zhang et al., 2015). These techniques
take a sliding window approach, where for each image location, multiple rectangles with different scales and
aspect ratios are examined for the presence of a pedestrian. This examination is generally characterised
by extracting features specifically designed for pedestrians (Dalal and Triggs, 2005) before using a binary
classifier (Dalal and Triggs, 2005; Dolldr et al., 2009; Benenson et al., 2013) or cascade of classifiers (Dollar
et al., 2014; Zhang et al., 2015) to determine if the rectangle represents a pedestrian.

Recent popularity of big data and deep learning have dominated the object recognition problem. Among
these data driven approaches, deep convolutional networks (DCN) with recognition performance quickly
approaching human levels (Krizhevsky et al., 2012; Donahue et al., 2013; Razavian et al., 2014; Sermanet
et al., 2014) are selected for use in this work. DCNs themselves have been used for over 20 years (LeCun
et al., 1989) for tasks such as character recognition. Over recent years DCNs have made an astonishing
impact on the task of object recognition within the computer vision community (Krizhevsky et al., 2012;
Farabet et al., 2013; Razavian et al., 2014; Girshick et al., 2014; Donahue et al., 2013) largely contributed
to the availability of huge labelled image sets such as ImageNet (Deng et al., 2009). In this work, we use a
network based on the work of (Krizhevsky et al., 2012) that was pre-trained on ImageNet which we re-purpose
for the mine-site environment with limited label data and large sequences of unlabelled background data.
While even deeper network architectures (Simonyan and Zisserman, 2014; Szegedy et al., 2015) have recently
surpassed the (Krizhevsky et al., 2012) model for the ImageNet task, we continue to use the (Krizhevsky
et al., 2012) model for efficiency and argue that a comparison of network architectures is beyond the scope
of this work.

Recognising what objects are in an image is only half of the object detection problem. The other half is
locating the objects within the image. Sermanet et al. (Sermanet et al., 2014) sample over multiple scales and
exploit the inherently spatially dense nature of the convolutions within DCNs to identify regions with high
responses. Similarly, (Farabet et al., 2013) also perform convolutions over multiple scales and combine the
responses over superpixel segmentation (Felzenszwalb and Huttenlocher, 2004). Another popular approach
and the one that we base this work off is the region convolutional neural network (RCNN) of (Girshick et al.,
2014). The RCNN framework efficiently combines the DCN of (Krizhevsky et al., 2012) with an object
proposal method: selective search (Uijlings et al., 2013). Generic object proposal methods aim to efficiently
scan the entire image at different scales and aspect ratios to reduce potentially millions of search windows



down to hundreds (Hosang et al., 2014) of the most likely candidates. In this work we use edge box object
proposals (Zitnick and Dollar, 2014) as the accuracy is higher and significantly faster according to a recent
survey of object proposal methods (Hosang et al., 2014).

In this work we make use of information fusion for combining information from both the background model
and the DCN output. In (Bewley and Upcroft, 2015) simple logic was used for combining the output of both
systems, such that if the DCN responded with a car or person and the sample was not background then
it would indicate a detection. This approach creates a hard decision where a failure in either system results
in a miss detection. In contrast, probablistic approaches allow for a softer fusion of information (Dempster,
2008). In this work, we utilise probablistic variants of the DCN and background model in order to formulate
the fusion of information in a classical Bayesian inference framework (Durrant-Whyte and Henderson, 2008).

3 Methodology

In this section, we describe our approach to vision based object detection where we highlight similarities and
differences to the inspiring RCNN pipeline (Girshick et al., 2014). Our method consists of three key phases:
1) Region proposals with non-maximum suppression (NMS), 2) DCN recognition and finally, 3) Detections
are validated by checking for novelty against the background model. See Figure 2 for a high-level overview
of this pipeline. We bypass the problem of over-fitting on a small dataset by using a pre-training DCN and
map its output to mining relevant classes.

The detection method is then extended with the incorporation of background modelling techniques to improve
and adapt to the mining environment. From this background model we investigate two different novelty
measures approximating the probability a detection was not generated by a background sample. This novelty
measure produces a single value on the interval [0, 1] where low values represent a high similarity with the
background model and the high values represent that the sample is novel with respect to the background
model. Finally, we describe how information from both the DCN prediction and the background model are
combined using a probabilistic fusion framework.

3.1 Region Proposals

The aim of region proposals is to efficiently scan the image to eliminate millions of potential windows,
keeping only the regions that are likely to contain an object of interest. We use the EdgeBoxes region
proposal method (Zitnick and Dolldr, 2014) over the selective search (Uijlings et al., 2013) used in the
original RCNN work as this method is orders of magnitude faster with comparable accuracy. For a detailed
comparison of region proposal methods we refer the reader to (Hosang et al., 2014).

Region proposal methods are regarded as a generic object proposal technique that is independent of object
class (Hosang et al., 2014). However, in practice these methods are sensitive to parameter tuning, requiring
data relevant to the target domain for optimal performance (McMahon et al., 2015). The default parameters
for EdgeBoxes were adjusted to return a fixed 1000 proposals and an additional step of non-maximum
suppression (NMS) is applied and described next.

3.2 Non-maximum Suppression

The region proposals provided by the EdgeBoxes method are further reduced through a process of NMS.
The NMS process considers the score produced by the EdgeBoxes (EB) method and the overlap with other
bounding boxes. As the name suggests it then greedily suppresses all but the maximum scoring proposal for
all adjacent overlapping regions where the intersection-over-union (IOU) area is greater than a set threshold.
In contrast to applying NMS after the DCN (Girshick et al., 2014), this way we can speed up the detection
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Figure 2: An illustration of the detection pipeline used in this work. When a new image is provided, the
detection pipeline begins with the region proposal step. The system parameters are highlighted in blue and
green which are learnt offline from an off-the-shelf network and background only images respectively. Purple
represents the responses from an intermediate layer (also depicted as the purple star), that is compared with
the cluster centers of the background model indicated with black crosses. The red output layer of the DCN
contains scores for each class type. The output from the DCN and background model are fused to produce
the systems final output.

pipeline by reducing the number of proposals going into the DCN while maintaining comparable coverage
over the image.

To better understand the effect of applying NMS to the EB scores, the trade-off between the number of
proposals and its effect on the recall is further investigated. Ideally, it is preferable to have as few proposals
needed to cover all visible objects in order to minimise both the computational load of the later DCN and the
overall rate of false positives. Since object proposals is used as the first step in the pipeline, it is paramount
to have a good coverage of the true objects in the image since missed objects will never be recovered (Hosang
et al.,, 2014). Figure 3 shows a comparison between applying NMS to the region proposals and reducing
the number of proposals using the EB score. The EB4+NMS curve shows that applying small amounts of
NMS rapidly reduces the number of proposals while maintaining high recall. However, when suppressing
proposals with overlaps lower than 0.3 IOU, results in lower performance compared to simply thresholding
the EB score. The S shape of the EB+NMS curve shows that there exist a non-linear relationship between the
localisation accuracy around true objects and the number of proposals. The overlap threshold in this work
is set at 0.5 to produce approximately 260-300 proposals per frame where there is a considerable reduction
in proposals (possibilities for false positives) for a moderate drop in recall.
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Figure 3: Performance of EdgeBoxes (EB) region proposal method along with non-maximum suppression
applied with overlap thresholds set to [0,0.1,0.2, ...,0.7] shown with crosses. Note that the EB+NMS curve
converges with the EB curve at NMS threshold of 0.7 since that is the limit used in the EB default parameters.

3.3 Region Classification

Having selected regions of the image that have the general characteristics of an object, we now perform
object recognition to distinguish the object category. For this we apply the DCN from RCNN (Girshick
et al., 2014) which is based on the winning architecture (Krizhevsky et al., 2012) for the ImageNet Large
Scale Recognition challenge in 2012. For this work, we used the RCNN implementation provided with the
Convolutional Architecture for Fast Feature Embedding (caffe) (Jia et al., 2014) framework out-of-the-box
and apply it to classifiying the content of the object proposals generated as previously described.

Since the work in this paper largely gravitates around the recent success of DCNs, we briefly describe their
workings. A DCN consists of multiple layers, each performing a transformation of their input data in the
form of a linear projection followed by a differentiable, non-linear activation function to produce an output
response. A set of weights and biases govern the linear projection step in each layer which essentially
performs an inner product with the input and the weight parameters. The output responses for each layer
forms the input for the following layer in a feed-forward fashion, where the first input is the data and the
last represents a score for each class.

The architecture of (Krizhevsky et al., 2012) used in RCNN counsists of eight layers in total with five being
convolutional (convl-conv5) and three fully-connected (fc6-fc8). In the convolutional layers, the weights only
connect to a small receptive field in the input — acting like a 2D filter (or kernel) — that is shifted across
the lateral dimensions of the input to perform a 2D convolution. The fully-connected layers on the other
hand, remove the spatial structure of the data by flattening the transformed input before applying an inner
product with their weights to project the entire input into a new high dimensional space. The intuition of



this DCN architecture is that the convolutional layers transform the input into low level visual descriptors
representing local object parts, while the fully-connected layers are responsible for the high-level task putting
the parts together to classify the entire image (Azizpour et al., 2015).

The RCNN architecture consists of around 60 million parameters across all eight layers which were optimised
for classification via deep learning. Deep learning is the process of first applying a each layer transformation
in turn to the input data to produce the network output. The classification error of the network (or loss) is
then used to adjust the weights by an amount proportional to the error with respect to the layer input. As
each layer is differentiable, the chain-rule enables the error to be propagated back to update the parameters
in all layers. Given the high number of parameters, this network was trained using the large ImageNet
dataset consisting of 1.3 million labelled images. Training a model on this scale is enabled through the use
of Stochastic Gradient Descent (SGD).

The original detection task for the caffe RCNN model was to predict one of 200 classes that represent
common objects found in images taken from the internet. For this application we are only interested in
distinguishing between four high level categories, namely: background, person, light vehicles(LV) and
heavy vehicles (HV). Using a DCN model trained on ImageNet in a mining context raises several issues
that need addressing:

1. The majority of the 200 ImageNet classes are indoor/domestic related objects including Food (ap-
ple,burrito, etc.), Musical Instruments (accordion, saxophone, etc.) or various animals (bird, camel,
etc.)

2. How to associate mining classes with ImageNet classes?

3. Semantically, the background is significantly different from many of the existing object specific
classes.

To gain some insight, we use a small validation set of 200 mining related images to investigate the output
of the DCN out-of-the-box. This set is made up of cropped mine-site images containing the classes person,
LV and HV along with 90 interesting region proposals extracted from background only images taken on mine
sites. In Figure 4 we show the results of naively applying the pre-trained RCNN model to this image set.
To better visualise the output we applied a soft-max transform to approximate the output class prediction
as a probabilistic estimate. !

Not surprisingly, the person and LV classes are well represented and can be directly mapped from the
person and car ImageNet classes used to train the original DCN. On the other hand, the background
closely resembles uniform random sampling of classes as there are no relevant classes in the existing model
such as trees, buildings, or road signs etc. Similarly, the HV class prediction also mostly resembles a uniformly
random distribution with a slight bias towards the ImageNet classes snowplow, cart and bus.

3.3.1 Remapped Model

While the person or car class outputs can be simply mapped to person and LV, distinguishing between
background and HV from the output is without avail. From a practical perspective, detecting person and
LV is of higher importance for a passive computer vision system since HV are equipped with active protection
devices. With this in mind, we simply assign all 198 non person or car outputs as background and accept
that not detecting HV is a limitation of this remapping approach.

With this simple class mapping approach and assuming that falsely picking one of the positive classes is in
fact uniformly random, we expect to eliminate 99% of all the proposed background regions. However, when

11t is important to note that this is for visualisation purposes only and that the y-axis does not represent the true probability
since the finalsupport vector machine (SVM) layer of RCNN was not calibrated for probabilistic outputs.
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Figure 4: The average class estimate for a set of mining related images. Notice that person (class 123) and
light vehicle/car (class 36) are existing classes for the pre-trained network and can be used directly. The
background and the heavy vehicle classes are novel and show a wider spread as they are not modelled with
the pre-trained DCN.

processing around 100 proposals per frame, the expected false positive rate is once per frame. Later, we
propose a simple background model that reuses the DCN computation to provide a background likelihood
estimate for reducing this false positive rate.

3.3.2 Retrained Model

An alternative is to train the DCN specifically on mining images for the target classes, including the HV
class. This does raise the issue of learning the DCN parameters from the limited mining specific training
data available. When using a small training set, the DCN can settle into a state that fails to recognise
the wide variety of patterns that occur in the real world. This is largely caused by the massive number
of connections inside a network that tend to converge on the few unique patterns in the training set. To
overcome this effect of over-fitting the training data, many researchers (Ahmed et al., 2008; Aytar and
Zisserman, 2011; Oquab et al., 2014; Yosinski et al., 2014; Azizpour et al., 2015) choose to take a network
pre-trained on a massive dataset such as ImageNet and retrain only the last few layers for the task of
predicting a set of domain specific classes. The intuition behind this is that the visual knowledge gained
from the larger dataset is transferred to the target task to maintain diversity in low level feature extraction
while the higher level classification task is allowed to adapt to the new domain.



3.3.3 Remap vs Retrain

In this work, we took the off-the-shelf DCN with 200 ImageNet outputs and remapped the mining classes
referred to as the remapped DCN. Additionally, we train another model by replacing the last layer entirely
and retrain the network keeping all but the last two layers fixed to prevent over-fitting. This network
was trained until the loss reached zero on the set of 200 labelled mining specific examples. This model is
referred to as retrained. Since the number of labelled examples used for training is small, Figure 5 shows the
retrained model has negligible performance improvement over the remapped version which does not require
any training. However, retraining the network with a softmax loss, effectively trains the model to accurately
produce a probabilistic distribution over the target classes in contrast to using an SVM loss for the last layer
as in (Girshick et al., 2014). As we will later show, this is important when fusing the DCN output with the
proposed background model. Additionally, by retraining the DCN with outputs responsible for predicting
mining related classes, it can be trained to also detect HV with negligible computational overhead.
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Figure 5: A comparison between simply remapping the ImageNet classes to Mining classes based on the
activations shown in 4, versus retraining the network with mining images for classifying the target mining
related categories directly. The average precision (AP) is provided in the legend.

3.4 Background Modelling

While the landscape on a mine-site constantly changes over time in a geometric perspective, the bleak
visual appearance of the background remains predominantly consistent. The aim of this model is to capture
the visual appearance of common background regions which are poorly characterised by the DCN used for
classifying object proposals. At test time a proposal’s similarity to this model provides an additional measure
of confidence to be fused with the prediction output of the DCN model.

For a given background region, it generally belongs to one of an arbitrary set of categories, such as the



semantic categories of rock, sky, tree etc. Rather than using supervised techniques that require a set of
manually annotated images, we instead partition the background data without explicit semantic labels. To
do this, we exploit the assumption that intra-category samples generally appear visually similar to each other,
yet may be distinctively different to other background categories. Put another way, the background regions
form natural clusters enabling us to employ unsupervised techniques to model their visual appearance. See
Figure 6 for an illustration of the natural background clusters found by applying a clustering approach to a
mining dataset.

To describe the visual appearance of each region, the intermediate layers of the DCN provide a free and
compact representation suitable for this task. Additionally, these features have been shown to be robust
against lighting and viewpoint changes without any re-training (Siinderhauf et al., 2015). We refer the
interested reader to (Krizhevsky et al., 2012) for an illustration of the DCN’s inner workings. In general, the
first layer of a DCN extracts simple colour and texture features in the first layer, and through subsequent
layers, these features eventually transition to the learnt specific task (Yosinski et al., 2014) such as classifying
the 200 ImageNet classes. Along the way irrelevant visual information for the original task (e.g. features
describing sky) are lost once it reaches the final layer. With this intuition, we reuse the transformed data
from one of the DCN’s intermediate layers as an appearance descriptor for input to our background model.

To learn this cluster based model, a reservoir of negative samples is required. Gathering background data is
a relatively simple task since only inspection for the presence of target objects is necessary. Specifically, any
image sequence not containing any of the target objects can be used to build an extremely large reservoir
by extracting proposals from each frame.

Ideally this background reservoir should be large enough to contain sufficient diversity to capture the variation
in visual appearances, while also small enough for efficient nearest neighbour querying. To achieve this,
a process called “hard”-negative-mining (Felzenszwalb et al., 2010) is utilised to focus only on the most
informative image regions. Specifically, we run the detection pipeline with the pre-trained RCNN model of
(Girshick et al., 2014) over these background only sequences and keep only regions that falsely classified as
either a person or car. A sufficiently large reservoir can be built by also including near false positive regions
that fall within the SVM margin of the pre-trained RCNN model. In doing this we are left with a collection
of background region patches that are challenging in the sense that the DCN is unable to confidently classify
them as background.

3.4.1 Nearest K-means Cluster Model

The first background model simply consists of a non-parametric model where the Euclidean distance to
the nearest background example is used as a measure of novelty. Since the background reservoir is large,
potentially redundant, and computing Euclidean distances for high dimensional data is slow, it is desirable
to represent the background samples as a few exemplar points. With the intuition that the background
forms natural clusters we choose to represent the background appearance as a set of clusters. Using the
response output from an intermediate layer of the DCN as a visual feature f for a region proposal, the
k-means algorithm is applied to group the reservoir points into clusters. This facilitates the selectable size of
the background model M where the background sample points are the cluster centroids computed as follows:

1
T = T f'a j kia 1
= g 2.5 € M
J
where f; is the visual feature of sample j which is a member of the cluster £;.

At test time, each person or LV predicted patch is verified by measuring the Euclidean distance between its
intermediate feature f; and the nearest cluster mean

dy = man;(||f; — my|)). (2)



Figure 6: An illustration showing six of the most common types of background region proposals out of a total
of 128 clusters. The rows represent different clusters while the columns show a random background region
which is a member of the associated cluster. Each cluster gathers samples with similar visual appearance
such as centred on a tree (top row) or centred on sky with an adjacent vertical structure (second row).
Qualitatively, k-means clustering naturally formed mostly pure clusters with the exception of the forth row
which also covers a number of patches occurring with relatively low frequency.
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Figure 7: Detailed view of the distance to nearest cluster distribution for validation images composed of
background and non-background images.

If the nearest background cluster is close in this feature space, i.e. is visually similar, then the likelihood
that the test patch is background should increase. Conversely, it is expected that a patch corresponding to
an object of interest should be dissimilar to the background model, which is signified by a greater distance
to the nearest cluster centre. This expectation is corroborated with empirical evaluation on a small set of
held out background patches and 110 images of non-background objects as shown in Figure 7.

While a hard threshold on the distance between a test patch and the nearest cluster centre can be used to
suppress background detections (Bewley and Upcroft, 2015), a probabilistic version is favoured to enable soft
fusion with other information such as the DCN output. To achieve this, the large collection of background
samples is modelled using a parametric distribution. Figure 8 shows three different parametric distributions
overlaid on the empirical histogram of distances between the background patches and their corresponding
cluster centre. The gamma distribution best fits this data and is therefore used to approximate the likelihood
of distances conditioned on a background sample being supplied. The cumulative density function is then
used as a surrogate to the probability a test sample was not generated by the background as it has the
property of monotonically increasing with the minimum distance to any background cluster. This soft
probabilistic estimate of the test feature f; being a non-background sample is computed using the Euclidean
distance d; to the nearest cluster as:

7(a7/8dt)

L(a)
where v and I' are the lower and upper incomplete gamma functions following the standard cumulative
distribution function of a gamma distribution. The parameters a and S represent the shape and rate

P(ypoumlc # BG) = (3)
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Figure 8: Distribution of background samples as a distance from nearest cluster centre.

parameters of the gamma distribution. These parameters can be estimated by fitting to the reservoir data
as shown in Figure 8.

3.4.2 Joint Cosine Similarity Model

This alternate approach considers the similarity of all background clusters jointly rather than only the most
similar cluster. Here, the similarity from a test sample to all cluster centres from the k-means model is used
to discriminate between background and non-background samples. This enables a non-uniform weighting
for each of the clusters effectively transforming the extracted DCN feature into a new feature space. This
weighting is learnt by formulating the background model as a binary classification where the goal is to
discriminate between background and non-background samples.

Here we reconsider the use of the Euclidean distance for measuring novelty from the background clusters.
Particularly, given the high dimensionality of the DCN features, the Euclidean distance is easily compromised
by the curse of dimensionality (Aggarwal et al., 2001). This would also explain the peculiar property visible
in Figure 8 where the distance from the background samples to their nearest cluster centroid is distributed
far from zero, with low variance. To investigate this, an alternative similarity measure is introduced based
on the cosine distance to the cluster centres, which is considered to be more robust in high dimensions.
In this new background model a weighted sum of all similarity measures between the test sample and the
clusters is used to form a new feature representation.

Algorithm 1, details how the transformation of DCN features into a joint similarity representation along
with learning the weight and bias parameter for a logistic regression. The k X n matrix S is used to store
and represent a set of labelled features F' in their joint similarity form. This transformation essentially



Algorithm 1 Logistic Cosine Background Model Learning

Input: M > Set of all cluster means (Eqn. 1)
Input: F > DCN features of example labelled regions.
Input: 1 > Label vector corresponding to F.
Output: 0,0 > Weights and bias for logistic regression model.

1: function (M, K1)

2: S = O0pxn > Initialise similarity matrix

3: for f; € F do

4: for m; € M do

5: s;,; = cosine_similarity(f;, m;)

6: (0,b) = cross_validation(train-LR(), 10, (S,1)) > Perform 10 fold cross validated learning

return 0,b

compares all n samples in F' with each cluster mean vector using the standard cosine similarity measure
(lines 3-5). Finally, a logistic regression (LR) classifier is learnt on this transformed data using the labels 1
provided (line 6). The weight and bias parameters; 8 and b respectively, are optimised using SGD with kfold
cross validation to select an appropriate amount of regularisation. At test time, the probability that a DCN
feature f; represents a non-background patch is computed by first transforming into the similarity form s;,
and then fed into the LR classifier as follows:

1

Plysamle # BG) = 1 —Gre

(4)
where s; is the joint similarity representation vector of the test sample computed as in lines 4 and 5 of
Algorithm 1.

This LR classifier is trained using a held out validation set containing positive and negative patches, where
the learnt separation is shown in Figure 9. In contrast to the k-means model where each cluster is treated with
equal variance, this joint similarity based model captures the intuition that some clusters may have higher
importance when discriminating background for non-background. Additionally, the LR classifier produces
a probabilistic estimate enabling it to naturally fit within a Bayesian framework for fusing the background
model estimate with the DCN class prediction.

3.5 Fusing Measurements

So far we have described how we can adapt a DCN for making predictions of the mining related class
corresponding to each detected proposal. Additionally, a method for extracting features from the DCN,
coupled with a clustering approach forms a good representation for identifying background samples. Here,
we derive how these two measures can be combined with the goal of producing better estimates than either
method individually.

Given the output predictions from both the DCN ypcny and the background model ygaar, we can treat
these two predictions as two separate decision makers. While ypony and ypgay are not independent i.e.
P(ypen,ysam) # Plypen)P(ysenm ), they are conditionally independent on the object class ¢ expressed
as follows:

P(yponsysamlc) = P(ypen|c) P(ysa|c)- (5)

This independence enables us to fuse the DCN output, which has good target discrimination capabilities,
while the background model is good at suppressing non-target proposals.

Using Bayes’ Rule the class probability conditioned on the joint output of both the background model and
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Figure 9: An illustration of the separation learnt using a logistic regression model on a small set of 90
background and 110 non-background samples.

the DCN is expressed as:

Py Y c)P(c
P(clypen,ysam) = (;(ZZCEC;ZLAL)( ), (6)

where P(c) is the class prior and P(ypcon,ysca) is the joint probability of the observation. When selecting
the most likely class, the joint probability of observations can be ignored since it is common for all classes
Ci.

c* = argmax;[P(ypcn,ysan|ci) P(cs)]. (7)

4 Experiments

4.1 Mining Dataset

The dataset use for evaluating this work was collected from a camera mounted to a light vehicle operating in
an active mine-site, see Figure 10. While the motivation is to put vision based sensing on a heavy vehicle, a
light vehicle is more practical for gathering a diverse set of visual sequences. The cameras used in this study
were 0.9 MP BlackFly cameras produced by PointGrey. The frame-rate was fixed to 10 Hz and maximum
exposure time set to 20 ms to prevent blur. The lens focal length was set to 1.8 mm, translating a to 94
degree horizontal field of view. The dataset contains both static and dynamic instances of a person, LV or
HV.



Figure 10: The experimental dataset gathering vehicle with cameras mounted to the bullbar. Note: all
images used in this paper were captured from the camera on the left hand side of the vehicle.

Continuous video was gathered with and without the camera in motion and on various haul roads and a
few light vehicle only zones to capture variation in the environment. This video data was captured at 10
Hz and partitioned into various sequences. In this work we use 5 sequences where no people or vehicles are
visible to build our background model. Collectively these background sequences make up 8952 frames in
total (approximately 14 km). These sequences are referred to as Train 1-5 in Table 1.

To evaluate the performance we use another 6 sequences with several instances of person, LV or HV, that
were manually annotated using the tool developed by (Vondrick et al., 2012). These annotated sequences
contain 11150 frames in total (approximately 11 km) and referred to as Test 1-6 in Table 1.

In addition to the train and test sequences captured in the field, we made a small validation set of 200
manually cropped images containing mining objects. These validation images were collected from various
sources including the internet along with a few captured at night from the same mine site but in different
locations to the test sequences. This validation set was used throughout the design process to generate
Figures 4, 7, 9, 11, and Figure 12. Table 2 lists the parameters of the system with links to the empirical
studies performed in this work and the dataset sequences used. Note that the study performed for selecting
the NMS did use the test sequences since they are the only sequences available with substantial set of
annotated mining object classes in real life scenarios. However, since the same NMS is applied to all the
classifier models we consider the later comparisons in this experimental section to remain valid.



Table 1: Experimental Image Sequences

Name Total Purpose Environment Conditions Content
Frames

Train 1 2433 Learning Haul road between pits Morning, Sunny BG Only
Clusters

Train 2 1975 Learning In-pit haul road Midday, Sunny BG Only
Clusters

Train 3 1500 Learning In-pit haul road Afternoon, Semi- BG Only
Clusters overcast

Train 4 1669 Learning Haul road between pits Afternoon, Semi- BG Only
Clusters overcast

Train 5 1375 Learning Haul road between pits Evening, Overcast BG Only
Clusters

Validation 200 Parameter = Hand cropped mining images Day and night BG, People, LV, HV
Tuning from various sources®

Test 1 1463 Evaluation  Store yard and processing plant ~ Morning, Sunny People, LV

Test 2 2951 Evaluation  In-pit, haul road and LV area Midday, Sunny People, LV, HV

Test 3 600 Evaluation  Haul road between pits Midday, Sunny People, LV

Test 4 2827 Evaluation  In-pit and haul road Midday, Sunny LV, HV

Test 5 1569 Evaluation LV only area Evening, Overcast People, HV

Test 6 1740 Evaluation LV/HV parking area Night, Overcast People, LV, HV

@ The 200 validation images are made up from both internet images and several challenging background
and night images which were collected in the field but outside of the test sequences 1-6.

4.2 Background Model Validation

Here we describe the experiments performed to design our background modelling system explained in the
previous section. From the 5 background sequences, we applied the region proposal and remapped DCN
detection framework to find challenging region proposals from every tenth frame. While some of the false
objects may be observed in multiple frames, the time difference is sufficient to capture a variety of view
points for these distracting objects. We lowered the detection threshold to collect region proposals if the
remapped DCN predicted either a person or car in the top 5 out of 200 ImageNet class responses. With
this configuration we collect around 8000 hard negatives for our background reservoir. We held out 90 of
the most interesting background regions and added them to the validation set.

To address the design decisions for the background cluster model, we perform an empirical study using the
reservoir containing only negatives and the validation set with both negative and positives. We jointly test

Table 2: System Parameters

Parameter(s) Values Tuning Method Data Used
EB Max Count 1000 Assumed None
NMS Overlap 0.5 Empirical (see Fig. 3) Test 1-5
DCN Remapping * Empirical (see Fig. 4) Validation
DCN Retraining * SGD using classification loss Validation
BGM Clusters (k) 128 Empirical k-means (see Fig. 11) Train 1-5
BGM Euclidean (o, §) (0.015,0.111) Empirical (see Fig. 8) Validation
BGM Cosine (6, b) (*,-38.9) SGD with 10 fold cross validation Validation
Fusion prior (BG, Person, LV,HV) (0.7,0.1,0.1,0.1) Assumed None

* indicates a high dimensional parameter set.



different combinations of DCN layer features and number of clusters by evaluating their performance on the
validation set. For the distance threshold we set this to the distance corresponding to a 95% recall on the
positive set. With the recall fixed, the overall performance of the background model is measured by the
precision at which it can identify a true negative.

In all experiments we use the DCN structure of (Krizhevsky et al., 2012), which is an eight layer network with
five convolutional layers, followed by three fully connected layers. The last layer was adapted to the detection
task (Girshick et al., 2014) with 200 outputs corresponding to the ImageNet detection dataset. For extracting
a feature to describe the background appearance, we consider the response of layers in the network. Figure
11 shows the relative performance of the different DCN layers when sweeping over different background
model sizes measured by the number of clusters used. This experiment shows that the fc6 layer exhibits
substantially higher precision across all model sizes. This could be put down to its position in the network,
where it is the first layer to incorperate the global visual information, as opposed to the convolutional layers.
These findings are in agreement with a recent related study for investigating the performance of transfering
layers where the 6th layer regularly achieves the highest performance on the target task (Azizpour et al.,
2015).

Figure 11 shows that each layer produces a dog-leg shaped curve with a common turning point at 128 clusters.
This signifies a point where the diversity of the environment is sufficiently represented. While increasing the
number of clusters beyond 128 clusters continues to improve precision, the rate of improvement is small. E.g.
for 16x more clusters the improvement is only 1% (89% for 128 versus 90% for 2048 clusters) compared to
a 3% drop when using 16x fewer clusters (86% for 8 clusters). In terms of processing time, both the nearest
neighbour lookup for the k-means Euclidean model and the cosine similarity model is linear in the number of
clusters 2. Since the fc6 layer with 128 provides a reasonable trade-off between precision and computation
speed, these parameters are used in all remaining experiments. A detailed view of the distances between the
validation samples and the nearest cluster centre using these parameters can be seen in Figure 7.

Figure 12 illustrates the samples in this validation set with the largest error. The false negatives are mostly
night images which can be put down to the fact that similar images are rare if not non-existent in the
ImageNet samples used to train the DCN. For the false positives, these are mostly signs which make up
a minority of the scene. From these samples we can describe our background model as a form of novelty
detection where interesting parts of the scene such as signs are distinguished from the general background.
This finding along with the unsupervised clustering shown in Figure 6 are a testament to the DCN’s expressive
capabilities in representing visual similarity.

For the cosine based background model, fc6 features were used and the number of clusters was set to
128, matching the Euclidean k-means model. The logistic regression was trained using stochastic gradient
descent optimisation with regularisation penalty selected though 10-fold cross validation. The resulting
learnt separation between background and non-background was previously shown in Figure 9.

4.3 Detection Evaluation

The system is evaluated on a set of five daytime sequences and one night sequence, where the task is to
detect and locate both people and vehicles within each frame. In this evaluation we follow the same criteria
as described in (Bewley and Upcroft, 2015), where we consider a true detection if at least 50% of the
detection region is covered by a single ground truth object. This differs from the intersection-over-union
(IOU) definition of overlap, as we accept detecting a person’s head and shoulders without their whole body
while IOU would count this as both a miss detection and a false positive. Additionally, if multiple detections
overlap a single ground truth instance, we count this as a single true positive and neither of the overlapping
detections are false. A concrete example would be if a person’s head is covered by a single detection and
their body another. In such a scenario, both are considered valid detections but only count as a single true

2Efficient data structures like kd-trees where considered but due to the high dimensionality the practical improvement was
negligible.
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Figure 11: Cross-validation precision at a fixed recall of 95% for different DCN layers and the number of
clusters used to represent the background. Each point shows average of 5 trials. Pool 3-5 are derived from
convolutional layers 3-5 respectively while the fc6 and fc7 are direct copies of the fully connected layer
responses. Note: the x-axis is in logs scale.

positive per object. It should be also noted that any detection or miss detection of an object labelled as
partially occluded in the ground truth is ignored in this evaluation. Only the retrained model and the fused
models are capable of detecting HV so were omitted from the valuation across the different models for fair
comparison. To accommodate this, any detections which overlap with HV objects are considered as neither
true or false and are excluded from the evaluation.

Figure 13 shows both a failure example on the left and valid detections on the right for each sequence.
Sequence 1 (top row), is located near a store yard and a processing plant where there are a number of
regions with varying appearance making this sequence particularly challenging for the background model.
This sequence has a lower precision as there are a number of novel regions in this environment that mitigate
the benefits provided from the background model trained on common background sequences. The remapped
DCN model is less effected by this as some of the 200 ImageNet classes contain sufficient diversity to compete
with the person and LV class responses. The second sequence was captured around an in-pit go-line, where
mine workers transition between operating LV and HV. In this environment, the fused model performs
exceptionally well in detecting person and LV, however, HV would occasionally be missed or misclassified
as LV. The third and forth sequences were captured along main haul roads, between pits and in the pit
(respectively), representing the typical operating environments for HV. In this environment the fusion of the
background model nearly elimintates all the false positives caused by trees and other common road side
objects. However, novel objects such as signs and cones are sometimes detected (e.g. in the fourth row
of Figure 13 a distant “Reduce Speed” sign is mistaken for a person). The fifth sequence was taken in
the late afternoon in semi-overcast weather conditions and consists of multiple mine workers in view of the
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Figure 12: Validation samples where the nearest k-means background cluster model failed. Images are shown
in their warped form, representing the DCN input. The four right false negatives were collected at night.

camera. The final sequence was shot at night around the mine’s LV parking area where significant activity
was observed — coinciding with a shift change. Under these conditions the fused model is able to detect both
people and LV while it also appears to have learnt to distinguish between yellow lights mounted to vehicles
and white lights such as the bright spot corresponding to a saturated retro-reflective sign to the left of the
distance LV in the bottom right image of Figure 13.

Table 3 shows a detailed breakdown in the performance of all individual components and the fused method.
Here we have separated the performance of each component to isolate the behaviour of the DCN and the
background models (BGM). For all models the detection probability threshold was set to 0.5, except the
(Bewley and Upcroft, 2015) model which was based on a Euclidean distance to achieve 95% recall on the
validation set. The DCN output generally has a high recall but low precision as the DCN does not consider
the class prior probability.

The two BGM models behave considerably differently from each other. Particularly the model based on
the Euclidean distance to the nearest neighbour presents high recall as this was by design in the threshold
selection. However it is interesting that the performance in both precision and recall significantly dropped
compared to the held out validation set used in tuning the distance distribution parameters. On the other
hand, the Cosine based BGM has significantly improved the recall, resulting in an overall F1 score that is
compatible to the DCN output. Despite using a roughly assumed class prior, the soft fusion between the
retrained DCN and cosine BGM, enables the fused model to take advantage of both the high DCN recall
and the BGM’s precision to produce an overall top F1 score.

5 Conclusions and Future Work

Visual object detection has the potential to make a significant impact to improving safety in the mining
industry. The goal of this work is to address the gap in situational awareness of heavy mining vehicles to
sense other vehicles and personnel without active transponders. Towards achieving that goal, this paper
presented a passive, vision-only detection system that takes advantage of recent developments in computer



Figure 13: Exemplar images of fused model with images containing at least one false positive or miss
detection in the left column and only true positives on the right. Each row represents the sequence order 1
to 6 corresponding to the results in Table 3. The colours denote the predicted class of the object with: red
for Person, green for LV and blue for HV. Note: detecting and recognising HV is attributed to the retrained
component of the fused model.



Table 3:

Detection Performance on Mining Sequences

F1 (Precision, Recall)

Sequence DCN DCN BGM BGM Cosine Fused
(frames) Remapped®  Retrained Euclidean
Test 1 0.33 0.17 0.07 0.23 0.27
(0.24,054)  (0.10,0.72)  (0.04,0.67)  (0.14,0.57)  (0.17,0.67)
Test 2 0.81 0.80 0.22 0.73 0.90
(0.72,0.93)  (0.68,0.98)  (0.12,0.92)  (0.69,0.78)  (0.87,0.94)
Test 3 0.04 0.09 0.01 0.12 0.69
(0.02,0.46)  (0.05,0.68)  (0.01,0.55)  (1.00,0.06)  (0.90,0.56)
Test 4 0.26 0.42 0.10 0.56 0.68
(0.15,0.89)  (0.27,0.96)  (0.05,0.93)  (0.46,0.73)  (0.58,0.82)
Test 5 0.43 0.72 0.25 0.60 0.83
(0.33,0.62)  (0.58,0.93)  (0.15,0.89)  (0.79,0.48)  (0.88,0.78)
Test 6 0.57 0.61 0.47 0.60 0.59
(0.54,0.60)  (0.49,0.83)  (0.32,0.86)  (0.48,0.80)  (0.49,0.75)
Overall 0.475 0.541 0.202 0.550 0.692
(0.39,0.75)  (0.42,0.90)  (0.12,0.86)  (0.56,0.66)  (0.65,0.80)

@ This is a soft probabilistic version of the method presented in (Bewley and Upcroft, 2015).
Bold indicates the best performance across models.

vision and machine learning to detect both personnel and mining vehicles. This sensing approach was
evaluated in an active open-pit mine site environment across six different parts of the mine and at both day
and night. Challenges around over-fitting on a small dataset were addressed by exploring a fusion framework
incorporating a pre-trained DCN and exploring both remapping and retraining the final layers for adapting
to the mining environment.

The experiments show that the in-pit environment is suitable for vision based detection utilising object
proposals and DCNs, along with background modelling techniques. The experiments also show that the
amount of NMS applied to the proposed regions can increase the proposal recall compared to the same
number of proposals selected using the proposal score. However, it was also shown that this improvement
has limited range in the amount of NMS applied. This characteristic, to a degree, could be contributed
to the differences in the mining environment compared to the typical internet based images used in the
development of the EdgeBox proposal method used in this work.

When applying an off-the-shelf DCN pre-trained for the ImageNet detection task to mining imagery we
highlight that it performs poorly on both the background and the mining specific HV class. While this method
has the advantage of retaining knowledge of the large amounts of data from ImageNet for the common classes,
it is restricted in its ability to distinguish new and novel classes. On the other hand, retraining the final
layers using mining images overcomes this limitation allowing the HV class to be distinguished from the
background, person and LV classes. However, with the limited amount of labelled training data available,
this retrained model is comprable to simply remapping the classes from the pre-trained ImageNet model.

The use of a DCN alone for visual object detection is shown to perform poorly when presented with typical
mining imagery such as a haul road environment. To overcome this limitation, two variants of a background
model are presented in this work for the purpose of suppressing the false positives produced by the DCN.
The soft probabilistic variant of the background model when fused with the DCN output offers superior
performance over the logic based combination previously used for background suppression in (Bewley and
Upcroft, 2015). Quantitatively, the fused model presented achieves a relative improvement in F1 score of
46% over a pre-trained DCN and 28% over a DCN retrained with mining images.



This article also presents an improved variant of the background model shown to have several desirable at-
tributes. Firstly, the visual feature descriptor is already computed as part of the DCN recognition. Secondly,
it only required the bare minimum labelling effort to build a large reservoir of background only samples. It
is made robust to the high dimensional nature of the DCN features by using the cosine similarity followed
by logistic regression. All its parameters can be estimated from a small set of labelled images. Also the
cosine variate provides superior background discrimination over the simpler k-means model, achieving a
detection accuracy comparable to the best DCN baseline model on its own. Moreover, the higher precision
of the cosine background model makes it complementary to the high recall DCN when used in a fusion
framework. However, in sequences where the background differed significantly from the background only
training sequences its performance dropped considerably. This combined with the use of a static offline
trained background limits this approach to having either a comprehensive training set or restricting the
detection to similar environments, e.g. only haul roads. Future work in addressing this issue could include
learning the background cluster online by incorporating additional information from other sources.

The Bayesian fusion framework for combining the outputs of the DCN and the background model is basic
and assume independence. Despite its simplicity, the improvement in F1 score of the fused model over
its counterparts suggest there is value in combining these methods. Future work could include alternative
fusion techniques such as cascade architectures to improve computational efficiency or introducing other
sensor information.

Another characteristic of this work is that it does not retain any temporal information. In particular the
feed-forward architecture of the DCN treats each frame in the video like it is seeing it for the first time. An
advantage of this is that the framework is robust to motion experienced by either the object or camera by
performing the detection of each frame independently. The disadvantage of this is that temporal memory is
useful in video as objects move gradually in the image which can be exploited through tracking techniques
to improve recall. Also, while this work is only concerned with single camera based sensor data we see many
opportunities to combine techniques incorporating, motion segmentation (Bewley et al., 2014), odometry
(Hawke et al., 2015), stereo (Bewley and Upcroft, 2013) or range-based sensors for improved robustness.
Additionally, as more labelled mining image data becomes available we expect to be able to design and
fine-tune a DCN that performs better in this domain than the existing network designed for the ImageNet
benchmark.
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