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Abstract— This paper presents a self-supervised approach for
learning to associate object detections in a video sequence as
often required in tracking-by-detection systems. In this paper
we focus on learning an affinity model to estimate the data
association cost, which can adapt to different situations by
exploiting the sequential nature of video data. We also propose
a framework for gathering additional training samples at test
time with high variation in visual appearance, naturally inher-
ent in large temporal windows. Reinforcing the model with these
difficult samples greatly improves the affinity model compared
to standard similarity measures such as cosine similarity. We
experimentally demonstrate the efficacy of the resulting affinity
model on several multiple object tracking (MOT) benchmark
sequences. Using the affinity model alone places this approach
in the top 25 state-of-the-art trackers with an average rank of
21.3 across 11 test sequences and an overall multiple object
tracking accuracy (MOTA) of 17%. This is considerable as
our simple approach only uses the appearance of the detected
regions in contrast to other techniques with global optimisation
or complex motion models.

I. INTRODUCTION

This paper presents the design and implementation of a
self-supervised framework to solve the data association com-
ponent for tracking-by-detection. In tracking-by-detection, a
low level object detector typically operates independently
of the high level data association. This independence offers
several benefits including: robustness to drift as it does not
rely on state information, accommodates a changing number
of objects in the scene, and implicit recovery from detection
failure. To perform the data association most approaches rely
on position information and incorporate motion models [1],
[2] where hand crafted appearance features, such as colour
histograms are only used to resolve ambiguous situations
[31-[5].

While the tracking-by-detection problem has been inves-
tigated with various formulations, little attention has been
invested into improving the appearance similarity measure,
commonly used for quantifying the data association cost.
Our approach addresses this gap by actively modelling the
pairwise similarity between detections with a probabilistic
classifier, referred to as the affinity model. The output of
this model can be inserted into any tracking-by-detection
framework to improve data association in any arbitrary
environment.

We demonstrate that the temporal structure of a video
sequence can be explored to gather training samples to
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Fig. 1. An illustration of an association chain showing that while the
frame-to-frame affinities are strong, the direct affinity over longer temporal
windows are affected by viewpoint change and background clutter. Warmer
colours denote stronger affinity.

reinforce the proposed affinity model. For example, Fig. 1
illustrates an association chain where the frame-to-frame
affinities are appropriately high and can be used to identify
a difficult matching pair with a large temporal separation. To
gather reliable matching and non-matching samples, we rely
on two basic constraints for exploiting the structure of video
data. Firstly, an object should have higher visual affinity to
itself than other objects over short temporal durations, and
secondly, co-existing and non overlapping detections cannot
represent the same object, known as mutual exclusion. These
constraints provide a valuable utility in governing the self-
supervision, particularly in preventing drift, to facilitate life
long learning.

Our design is simple and practical as it can learn at test
time without labels, automatically adapting to new visual
appearances. Additionally, fewer parameters are required, in
contrast to conventional motion model approaches. Finally,
this purely appearance based affinity model is complimentary
to other approaches relying on object dynamics such as [6]
or approaches that incorporate an appearance based cost in a
global optimisation [7]. The key contributions of this paper
are as follows:

« modelling visual affinity with a probabilistic classifier,

o gathering matching examples with high variance by
exploring association chains,

e use of co-existing detections as a source of non-
matching examples,

« use of a purely appearance based data association cost,

« affinity model reinforcement without explicit labelling.



This paper is organised as follows: In the next section, we
position the proposed approach among existing works. An
overview of the proposed method is given in section III. In
section IV, we demonstrate the performance of the proposed
method before a conclusion and an outlook to future work
is given in section V.

II. RELATED WORK

Here, we review techniques incorporating visual appear-
ance for multiple object tracking (MOT) with a strong focus
on techniques that include a learning component or rely
on affinity measures. In a general sense, many techniques
associate detections between frames by utilising features
extracted from each frame to measure and compare the
strength of all potential matches [1], [2], [8], [9]. Selecting
among the candidate matches can either be performed in a
greedy (winner-take-all) approach [8], [9] or by formulating
a bipartite graph [1], [2] which can be solved optimally [10].
These approaches all require a measure of affinity between
two candidate detections but have mostly only considered
fixed affinity measures such as the intersection kernel [7],
[11] or Kullback-Leibler distance [5] between two colour
histograms or normalised cross correlation between patches
[2].

The focus of this work is to learn an affinity measure
which is optimised for the task of visual tracking, and which
can complement the above matching and graph optimisation
approaches. This approach is also related to the structural
SVM approach, originally used for supervised clustering
[12]. Kim et al. [13] use implicit spatial-temporal structure
of video based tracking by employing a structural SVM to
predict the optimal matching as formulated in a bipartite
graph structure.

Another approach is to cast data association into a ranking
problem where similar objects should be ranked higher over
dissimilar objects [14]. Soleraet et al. [5] propose a method
based on the Latent Structual SVM to partition a scene and
learn which input features are most important in a divide
and conquer fashion. While they use colour histograms in
their experiments, their learning approach can adapt to any
set of provided features. However, the divide step of their
approach is based on spatial distance limiting their state-of-
the-art performance to only static cameras.

More recently, Choi et al. [15] learnt an affinity model to
measure if two detections correspond where the input is a set
of low level feature trajectories, requiring that optical flow
must first be computed. Probably the most similar work to
ours is that of Bae and Yoon [16] which sequentially grows
tracklets computing confidence from multiple sources. They
learn to associate detections to tracklets using incremental
discriminative learning analysis on features composed of
both appearance and motion cues. Our method differs from
theirs as we do not use motion information and our affinity
model estimates a universal pairwise affinity measure while
theirs treats each tracklet as a separate class.

In collecting training samples from test data we make use
of the mutual exclusion constraint as a hard assumption in

self-supervision. The exclusion principle was first introduced
by [17] for the purpose of disambiguating two intersecting
tracks. Similarly, [18] enforced the exclusion property at both
the detection and trajectory levels using penalty terms within
a conditional random field framework, however their work
only considered the position of the detections. Position based
exclusion methods are generally combined with other cues
including motion and appearance [7] to become competitive.
This work extends the notion of exclusion from these earlier
works to reinforce the appearance affinity model to coher-
ently distinguish multiple detections when collecting samples
for training.

III. PROPOSED METHOD
A. Overview

The input to our system is a set of detections for each
frame in a sequence. Although our approach is agnostic to
the type of detector, we require that a description of the visual
appearance is supplied for each detection. Convolutional
network features are used as descriptors since they have
been found to successfully capture visual similarity in related
fields such as image retrieval [19] and clustering [20]. Addi-
tionally, when a convolutional network is used for the prior
detection step (e.g. [21]), computing such descriptors comes
for free as the computation is performed in the detection step.
While any sufficient descriptor could be used to describe
appearance, a detailed comparison with different descriptor
types is beyond the scope of this paper.

Following the lines of [1], [2], [13], we formulate the
frame-to-frame matching process as a bipartite graph. This
strictly enforces a one-to-one matching among the detections
between adjacent frames. The Hungarian algorithm [10] (also
known as the Kuhn-Munkres method) is then used to find the
optimal assignment which maximises the total affinity across
all frame-to-frame matches. The overall performance of this
assignment boils down to the quality of the affinity measure
employed.

We concentrate on modelling the visual affinity and pro-
pose to formulate it as a binary classification problem. This
affinity model takes a pair of visual descriptors to produce
an output indicating whether the two samples match. The
affinity model’s output is then used as the matching score to
drive the Hungarian based matching to associate detections
to tracklets. In the remainder of this section we go into more
detail of our approach and describe how we train this model
in a self-supervised manner.

B. Pairwise Features

To discriminate a pair of candidate patches as either
matching or non-matching, a bidirectional feature is required.
For pragmatic reasons, we simply compute the absolute
difference between each element of the two patch descriptors
as follows:

d;; = [d; — dj| (1),

where d; ; is a vector representing the pairwise descriptor
computed from the descriptors d; and d; extracted from



detection patches ¢ and j respectively. A comparison of
various descriptor extraction techniques and methods for
constructing pairwise feature vectors is beyond the scope
of this paper, so unless stated otherwise this is the pairwise
feature descriptor used throughout this work.

C. Affinity Metric

The affinity is modelled with a linear logistic regression
classifier [22] and trained on a set of candidate patch pairs.
Given a descriptor describing the appearance of each patch,
the goal is to learn which features within the descriptors
are most informative for discriminating between a pair of
matching and non-matching patches. The affinity model
approximates the probability that two patches match denoted
by:

1
1+ exp—(07di;+b)

Pa(mld; ;) = (2),
where 6 denotes the weights corresponding to each feature
and b is a bias term. Both # and b are efficiently optimised
through Stochastic Gradient Descent (SGD) on a set of
matching and non-matching pairs.

D. Collecting Initial Pairs

As with any classification problem, a set of training
samples is required in order to train the affinity model. It
is desirable to have a means of collecting training samples
in any new environment for which this system is deployed
for life-long learning. In the contexts of visual tracking, we
can rely on the mutual exclusion constraint to gather non-
matching pairs from each frame. Similarly, an initial set
of positive pairs can be collected using optimal bipartite
matching across frames and conservatively keeping only
high confident matches. To achieve this however, an initial
measure of similarity is required.

The cosine similarity metric is used as an initial measure
of affinity since it possesses several desirable properties,
including:

o When features are constrained to positive spaces, the
cosine similarity is bounded to interval [0,1]. This
reflects the probabilistic output range for our desired
affinity model.

o Computation of cosine distance does not require expen-
sive modelling of the data distribution, i.e. Mahalanobis
distance.

o Considered to be more stable in higher dimensions than
other measures based on Minkowski distance.

Fig. 2 shows that the cosine similarity metric is a reason-
able measure as its maximal match is generally the same
object. However, as the cosine similarity rapidly decays
with increasing temporal windows we restrict this initial
set of positive matching to adjacent frames. This initial
set of samples is used to seed the affinity model with a
single round of SGD. Next, we describe how these frame-
to-frame associations are used to learn an affinity measure
for estimating the matching likelihood over multiple frames.
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Fig. 2. A comparison between cosine similarity and the learnt affinity
model after three iterations on a set of 200 tracklet patches of pedestrians
taken from the KITTI benchmark [23]. The lower triangle represents
the ground truth matching where the detections have been grouped and
reordered such that each red block represents an instance of an object. The
upper triangles show the affinity estimate (top row) and chained affinity
(bottom row). This comparison demonstrates that having a near binary
estimate is important in long association chains. Best viewed in colour.

E. Association Chains

Using the initial affinity model as a similarity measure for
frame-to-frame associations, we seek to extend its capability
to match more challenging examples with higher variation
as observed over larger temporal windows. To achieve this,
we explore the frame-to-frame associations to incrementally
grow a chain and select pairs along this chain to reinforce
the affinity model. This process is provided in Algorithm 1
with key points described in this section.

Using the probability chain rule, the probability that two
non-temporally-adjacent detections represent the same object
can be modelled as:

j—1
pe(mldi;) = [] pa(mldees1). (3)

t=1

This chained affinity essentially captures the joint proba-
bility that all associated detections in the tracklet segment
[, 7] belong to the same object. As the temporal duration
between the two detections ¢ and j increases, there is a
monotonic decrease in the chained affinity, accurately cap-
turing the growing uncertainty. Put another way, the chained
affinity has an upper bound which is less than the minimum
link affinity along the chain. This is important in identifying
the temporal boundary of an objects existence as shown in
Fig. 2.

By exploring the tracklet history, errors in the direct
affinity measure can be compared to the chained affinity
and used to collect additional positive training samples over
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Fig. 3. Three tracklets where colour denotes object identity. By exploring
the tracklet, detection 7 in the current frame can be linked to detection j
several frames before by using the chained affinity to create a new positive
sample pair (7, ). Similarly, since j and k share the same frame we can
also gather a non-matching pair (¢, k).

larger temporal windows. To prevent learning from poten-
tially incorrect matches, only confident positive pairs are
collected as measured by comparing the chained affinity to a
threshold ¢ (line 6 of Algorithm 1). These samples are used
to reinforce the affinity model through incremental learning
— causing the frame-to-frame direct affinities to approach 1 —
resulting in a reduction in the decay of the chained affinity —
and ultimately increasing the chain for gathering additional
samples.

Consistently adding new examples of positive matches
from the temporal history can lead to an imbalance of the
negative to positive ratio. The common remedy of increasing
the weighting ratio between the negative and positive classes
can be limiting as it is often difficult to estimate the ratio
ahead of time. To alleviate this dissension, we build off the
association chain affinity introduced in the last section to also
find additional non-matching examples over longer temporal
windows. The association chains are also used to collect
additional negative samples to supplement the non-matching
examples of the current frame collected by using the mutual
exclusion constraint.

Given that we have formed a tracklet [¢, j] with high confi-
dence, other non-overlapping detections in the same distant
frame can also be used as negative match examples. The
intuition of this is aligned with the notion of self-similarity,
i.e. as the visual appearance of a single object changes over
time so does the relative appearance of that object with
respect to other objects. For example, Fig. 3 shows a matched
tracklet chain [¢, j] where the older detection j shares the
same frame as detection k. Given that ¢ matched j with a
confidence of p.(m|d;;), and that j # k due to mutual
exclusion, we expect that the direct affinity between ¢ and &
should be low (see lines 14 and 15). This places an upper
limit on the affinity between ¢ and another non-overlapping
detection k from the same frame as j. Errors from the affinity
model which violate this constraint are used as non-matching
samples during the incremental updating of the model.

FE. Classifier Balance

Self-supervised frameworks are prone to drift, particularly
where the model learnt is the same model used to gather
examples. The intuition behind the mutual exclusion and

Algorithm 1 Exploring tracklets for difficult samples

Input: d;
Input: t,_;

> descriptor of current detection ¢
> tracklet list matched to detection ¢
Input: fy() > Eqn. 2
Output: X, m,w > Training inputs, outputs and weights
1: function (d;, t;_1, fo)

2 Pc = fa(di,ti)

3 for j = reverse_iterate(t;_1) do
4 Pa = fa(di ;)

5: Pe = Pe * fG(dj—l,j) > Eqn 3
6: if p.(7,7) < ¢ then

7 break

8 if p. > p, then

9: X di,j

10: m<+ 1

11 W < (Pec — Pa)

12: for each k € frame(j) do

13: if overlap(j, k) = False then
14: Pn=1— fo(dir)

15: if p. > p,, then

16: X «—dy

17: m<+ 0

18: W (pc — Pn)

return X, m, w

bipartite matching constraints offer some robustness to drift
by selectively rejecting potential pairs which violate these
constraints. However, the bipartite property assumes a one-
to-one matching which does not factor in situations where
objects enter or leave the scene and/or the detector misses
or introduces false positives. These situations are actively
handled by further rejecting matches if their affinity is
less than 50%. If the affinity model is incorrect with this
prediction, i.e. the pair are truly matched then this small
failure can lead to severe consequences. This situation occurs
if the model becomes negatively biased, which generates a
ripple effect where the tracklet is broken, thus limiting the
positive feedback effect of the association chain reinforce-
ment causing the model to become further negatively biased.

Not all errors are created equally!

The key to combating this bias problem is in the placement
of importance for the samples collected. Lines 11 and 18
of Algorithm 1 weight the positive and negative samples
respectively. Both of these were vetted by first checking if
the affinity model created an error by comparison with the
chained affinity. This weighting of samples by the amount of
error creates a balanced interplay between the positive and
negative collection of samples, keeping the model neutral.

Finally, the samples collected over the test sequence are
then used to retrain the logistic regression classifier. This
improves the affinity model and ultimately enhances the per-
formance of the Hungarian algorithm in assigning the frame-
to-frame associations during the tracklet building process.



IV. EXPERIMENTS

The effect of this learnt affinity method is evaluated in the
context of tracking-by-detection on various MOT benchmark
sequences described in [24]. This MOT benchmark provides
a unified framework for evaluating different multiple object
trackers over a variety of sequences filmed from different
viewpoints, with different lighting conditions, and different
levels of target density.

In this experiment, we used the supplied detections pro-
vided with the dataset which where generated using the ag-
gregated channel features (ACF) detector [25]. From each de-
tection bounding box, we use the deep 16-layer convolutional
network of [26] as a descriptor extractor. Each detection
patch is resized to 224 x 224 and propagated forward through
13 convolutional layers and one fully-connected layer to
produce a 4096 dimensional feature to represent the visual
descriptor.

Both the Hungarian matching and logistic regression
model implementation were from the scikit-learn toolkit [27].
Our unoptimised, single threaded python implementation of
this tracker runs at 3.7 frames per second on a 2.5 GHz
intel”M 7.

Table I shows the performance of the proposed method
using the widely accepted CLEAR MOT metrics [28] eval-
uated with a 0.5 intersection over union threshold. The
Multiple Object Tracking Accuracy (MOTA) combines all
false positives, false negatives, and identity switches into
a single number, and Multiple Object Tracking Precision
(MOTP) measures the average distance between the ground
truth and the tracker output. For both the MOTA and MOTP a
higher value represents better performance. The ID switches
indicate the total number of times a true object has switched
identities according to the tracker output following the strict
definition in [14]. Other metrics listed are the False Alarms
per Frame (FAF), Mostly Tracked (MT) and Mostly Lost
(ML) metrics along with the number of False Positives (FP)
and False Negatives (FN). The number of Ground Truth
object (GT) is also shown for each sequence.

The results are split into training and test sequences. It is
important to note that the ground truth labels were not used
within the self-supervised procedure. Decisions on selecting
hyper-parameters such as the minimum confidence threshold
0 and logistic regression regularisation were selected to in-
crease the MOTA on these training sequences. The minimum
confidence threshold § = 0.9 was found to give best results
on the training sequences.

We also include the results of other tracking methods
discussed in Section II. Namely a general tracking-by-
detection method that uses the Hungarian algorithm TBD
[2] and two affinity learning based methods: TC_ODAL
[16], LDCT [5]. When considering the key MOTA score our
approach performs quite favourably to the related method
affinity methods indicating that our self-supervised approach
is able to correctly adapt to the data observed. However, it
is important to note that several of these sequences involve
a dynamic camera. This heavily impacts the overall MOTA

score for LDCT [5] which focuses primarily on applications
with a static camera. Our method also achieves comparable
results to a purely motion based technique [6], indicating
that appearance is adequate in object tracking and could be
treated as an independent low level tracker if combined with
a motion based tracker.

Qualitative results are shown in Fig. 5. The vertical lines
indicate an ID switch. With closer inspection (see Fig. 4),
many of these are caused by a duplicate detection or false
positive in a frame adjacent to a object entering of leaving
the scene. Since this technique only matches detections in
adjacent frames using visual appearance, ID switches and
fragmentation errors are to be expected. Nevertheless, given
the large number of tracklets and frames, the affinity model
produces accuracy data association in the majority of frames.
Furthermore, the white circles in Fig. 5, show detections
which were not matched to either the previous or next
adjacent frames. In the PETS sequence, it is obvious that
these detections correspond to a stationary object which are
actually false positives generated by the low level detector.
This indicates that temporal inconsistency could be used as a
cue for false positive detections which are implicitly handled
within this technique as they are not matched to any object
tracklet. A clear downside however is the amount of track
fragmentation. This is caused by the frames where an object
is miss-detected or when two detections cover an object
creating a new tracklet. These limitations indicate that this
method could be further improved if combined with motion
based models.

Fig. 4.
positive in the top frame getting reassigned to an actual pedestrian emerging
from behind a foreground pedestrian. Best viewed in colour.

Frames 74, 77, and 80 of the KITTI-17 sequence showing a false



TABLE I
PERFORMANCE OF THE PROPOSED APPROACH ON MOT BENCHMARK SEQUENCES.

| MOTAT | MOTPt | FAF| | GT | MTt | ML) | FP, | FN| | IDsw| | Frag|

TUD-Stadtmitte 53.8 65.6 0.90% | 10 | 50.0% | 0.0% 146 348 40 33

Train Sequences TUD-Campus 35.7 70.6 0.34% 8 12.5% | 12.5% 51 157 23 25
PETS09-S2L1 67.7 71.4 087% | 19 | 789% | 0.0% 648 603 193 152

ETH-Bahnhof 29.3 734 1.52% | 171 | 23.4% | 37.4% | 1544 2121 165 208

ETH-Sunnyday 30.9 76.2 0.29% | 30 | 10.0% | 50.0% 118 1104 61 73

ETH-Pedcross2 79 713 0.17% | 133 | 0.0% | 85.0% 173 5543 54 78

ADL-Rundle-6 254 71.8 2.09% | 24 4.2% 8.3% 974 2590 174 160

ADL-Rundle-8 10.9 724 251% | 28 | 10.7% | 39.3% | 1653 4213 178 187

KITTI-13 5.8 70.9 0.47% | 42 48% | 38.1% 327 355 36 29

KITTI-17 48.0 70.8 0.14% 9 0.0% | 11.1% 44 292 19 21

Venice-2 13.3 72.6 381% | 26 | 11.5% | 192% | 2421 3591 177 164
Overall 24.5 72.1 1.43% | 500 | 14.6% | 45.6% | 8099 | 20917 1120 1130

TUD-Crossing 512 73.0 0.2% 13 | 154% | 15.4% 39 459 40 50

Test Sequences PETS09-S2L2 27.5 70.6 1.0% 42 0.0% | 26.2% 449 6153 385 359
ETH-Jelmoli 329 732 0.6% 45 | 133% | 28.9% 283 1334 86 98

ETH-Linthescher 15.4 74.1 01% | 197 | 1.5% | 76.1% 94 7369 90 103

ETH-Crossing 19.6 74.7 0.1% 26 77% | 65.4% 13 783 10 10

AVG-TownCentre 133 70.0 1.0% | 226 | 1.3% | 61.1% 442 5637 118 152

ADL-Rundle-1 5.1 71.3 7.0% 32 | 15.6% | 21.9% | 3503 5010 321 306

ADL-Rundle-3 18.1 71.8 3.9% 44 6.8% | 22.7% | 2420 5523 385 261

KITTI-16 13.9 72.1 0.5% 17 0.0% | 23.5% 105 1279 80 73

KITTI-19 13.5 66.5 1.1% 62 6.5% | 30.6% | 1128 3266 227 326

Venice-1 12.5 71.9 1.7% 17 0.0% | 41.2% 757 3120 117 134
*Proposed method Overall 17.0 71.2 1.6% | 721 | 39% | 52.4% | 9233 | 39933 1859 1872
°®TC_ODAL [16] Overall 15.1 70.5 22% | 721 | 32% | 55.8% | 12970 | 38538 637 1716
°LDCT [5] Overall 4.7 71.7 24% | 721 | 114% | 32.5% | 14066 | 32156 | 12348 2918
°TBD [2] Overall 15.9 70.9 2.6 721 | 6.4% | 47.9% | 14943 | 34777 1939 1963
TSMOT [6] Overall 18.2 712 1.5% | 721 | 2.8% | 54.8% | 8780 | 40310 1148 2132

* Purely appearance based
© Position and appearance based
T Purely motion based

KITTI-17 Tracklets PETS09-S2L1 Tracklets
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Frame Frame

Fig. 5. Spatial-temporal representation of the tracklets discovered in a low target density setting (left) and high density setting (right). It is important
to note that frame-to-frame matching was performed using appearance affinity making it robust to complex dynamics as observed in the PETS09-S2L1
sequence. Near vertical lines indicate an ID switch. Best viewed in colour.



V. CONCLUSION

In this paper we have proposed a method to learn a visual
appearance affinity model for the problem of associating
object detections across video frames. The proposed method
exploits the sequential nature of video sequences to collect
additional training data as new frames arrive and explore
existing associations for additional training pairs. We show
that this affinity model can efficiently be updated from
the test data without explicit labelling enabling life-long
learning. Experimental evaluation shows that this appearance
based affinity model is capable of operating as the primary
association score for multiple object tracking. In future work,
we intend on extending this affinity model to perform online
tracking and learning. Additionally, incorporating motion
information and tracklet merging strategies offer potential
avenues for reducing track fragmentation.
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