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Abstract— This paper presents a self-supervised approach for
learning to associate object detections in a video sequence as
often required in tracking-by-detection systems. In this paper
we focus on learning an affinity model to estimate the data
association cost, which can adapt to different situations by
exploiting the sequential nature of video data. We also propose
a framework for gathering additional training samples at test
time with high variation in visual appearance, naturally inher-
ent in large temporal windows. Reinforcing the model with these
difficult samples greatly improves the affinity model compared
to standard similarity measures such as cosine similarity. We
experimentally demonstrate the efficacy of the resulting affinity
model on several multiple object tracking (MOT) benchmark
sequences. Using the affinity model alone places this approach
in the top 25 state-of-the-art trackers with an average rank of
21.3 across 11 test sequences and an overall multiple object
tracking accuracy (MOTA) of 17%. This is considerable as
our simple approach only uses the appearance of the detected
regions in contrast to other techniques with global optimisation
or complex motion models.

I. INTRODUCTION

This paper presents the design and implementation of a

self-supervised framework to solve the data association com-

ponent for tracking-by-detection. In tracking-by-detection, a

low level object detector typically operates independently

of the high level data association. This independence offers

several benefits including: robustness to drift as it does not

rely on state information, accommodates a changing number

of objects in the scene, and implicit recovery from detection

failure. To perform the data association most approaches rely

on position information and incorporate motion models [1],

[2] where hand crafted appearance features, such as colour

histograms are only used to resolve ambiguous situations

[3]–[5].

While the tracking-by-detection problem has been inves-

tigated with various formulations, little attention has been

invested into improving the appearance similarity measure,

commonly used for quantifying the data association cost.

Our approach addresses this gap by actively modelling the

pairwise similarity between detections with a probabilistic

classifier, referred to as the affinity model. The output of

this model can be inserted into any tracking-by-detection

framework to improve data association in any arbitrary

environment.

We demonstrate that the temporal structure of a video

sequence can be explored to gather training samples to
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Fig. 1. An illustration of an association chain showing that while the
frame-to-frame affinities are strong, the direct affinity over longer temporal
windows are affected by viewpoint change and background clutter. Warmer
colours denote stronger affinity.

reinforce the proposed affinity model. For example, Fig. 1

illustrates an association chain where the frame-to-frame

affinities are appropriately high and can be used to identify

a difficult matching pair with a large temporal separation. To

gather reliable matching and non-matching samples, we rely

on two basic constraints for exploiting the structure of video

data. Firstly, an object should have higher visual affinity to

itself than other objects over short temporal durations, and

secondly, co-existing and non overlapping detections cannot

represent the same object, known as mutual exclusion. These

constraints provide a valuable utility in governing the self-

supervision, particularly in preventing drift, to facilitate life

long learning.

Our design is simple and practical as it can learn at test

time without labels, automatically adapting to new visual

appearances. Additionally, fewer parameters are required, in

contrast to conventional motion model approaches. Finally,

this purely appearance based affinity model is complimentary

to other approaches relying on object dynamics such as [6]

or approaches that incorporate an appearance based cost in a

global optimisation [7]. The key contributions of this paper

are as follows:

• modelling visual affinity with a probabilistic classifier,

• gathering matching examples with high variance by

exploring association chains,

• use of co-existing detections as a source of non-

matching examples,

• use of a purely appearance based data association cost,

• affinity model reinforcement without explicit labelling.



This paper is organised as follows: In the next section, we

position the proposed approach among existing works. An

overview of the proposed method is given in section III. In

section IV, we demonstrate the performance of the proposed

method before a conclusion and an outlook to future work

is given in section V.

II. RELATED WORK

Here, we review techniques incorporating visual appear-

ance for multiple object tracking (MOT) with a strong focus

on techniques that include a learning component or rely

on affinity measures. In a general sense, many techniques

associate detections between frames by utilising features

extracted from each frame to measure and compare the

strength of all potential matches [1], [2], [8], [9]. Selecting

among the candidate matches can either be performed in a

greedy (winner-take-all) approach [8], [9] or by formulating

a bipartite graph [1], [2] which can be solved optimally [10].

These approaches all require a measure of affinity between

two candidate detections but have mostly only considered

fixed affinity measures such as the intersection kernel [7],

[11] or Kullback-Leibler distance [5] between two colour

histograms or normalised cross correlation between patches

[2].

The focus of this work is to learn an affinity measure

which is optimised for the task of visual tracking, and which

can complement the above matching and graph optimisation

approaches. This approach is also related to the structural

SVM approach, originally used for supervised clustering

[12]. Kim et al. [13] use implicit spatial-temporal structure

of video based tracking by employing a structural SVM to

predict the optimal matching as formulated in a bipartite

graph structure.

Another approach is to cast data association into a ranking

problem where similar objects should be ranked higher over

dissimilar objects [14]. Soleraet et al. [5] propose a method

based on the Latent Structual SVM to partition a scene and

learn which input features are most important in a divide

and conquer fashion. While they use colour histograms in

their experiments, their learning approach can adapt to any

set of provided features. However, the divide step of their

approach is based on spatial distance limiting their state-of-

the-art performance to only static cameras.

More recently, Choi et al. [15] learnt an affinity model to

measure if two detections correspond where the input is a set

of low level feature trajectories, requiring that optical flow

must first be computed. Probably the most similar work to

ours is that of Bae and Yoon [16] which sequentially grows

tracklets computing confidence from multiple sources. They

learn to associate detections to tracklets using incremental

discriminative learning analysis on features composed of

both appearance and motion cues. Our method differs from

theirs as we do not use motion information and our affinity

model estimates a universal pairwise affinity measure while

theirs treats each tracklet as a separate class.

In collecting training samples from test data we make use

of the mutual exclusion constraint as a hard assumption in

self-supervision. The exclusion principle was first introduced

by [17] for the purpose of disambiguating two intersecting

tracks. Similarly, [18] enforced the exclusion property at both

the detection and trajectory levels using penalty terms within

a conditional random field framework, however their work

only considered the position of the detections. Position based

exclusion methods are generally combined with other cues

including motion and appearance [7] to become competitive.

This work extends the notion of exclusion from these earlier

works to reinforce the appearance affinity model to coher-

ently distinguish multiple detections when collecting samples

for training.

III. PROPOSED METHOD

A. Overview

The input to our system is a set of detections for each

frame in a sequence. Although our approach is agnostic to

the type of detector, we require that a description of the visual

appearance is supplied for each detection. Convolutional

network features are used as descriptors since they have

been found to successfully capture visual similarity in related

fields such as image retrieval [19] and clustering [20]. Addi-

tionally, when a convolutional network is used for the prior

detection step (e.g. [21]), computing such descriptors comes

for free as the computation is performed in the detection step.

While any sufficient descriptor could be used to describe

appearance, a detailed comparison with different descriptor

types is beyond the scope of this paper.

Following the lines of [1], [2], [13], we formulate the

frame-to-frame matching process as a bipartite graph. This

strictly enforces a one-to-one matching among the detections

between adjacent frames. The Hungarian algorithm [10] (also

known as the Kuhn-Munkres method) is then used to find the

optimal assignment which maximises the total affinity across

all frame-to-frame matches. The overall performance of this

assignment boils down to the quality of the affinity measure

employed.

We concentrate on modelling the visual affinity and pro-

pose to formulate it as a binary classification problem. This

affinity model takes a pair of visual descriptors to produce

an output indicating whether the two samples match. The

affinity model’s output is then used as the matching score to

drive the Hungarian based matching to associate detections

to tracklets. In the remainder of this section we go into more

detail of our approach and describe how we train this model

in a self-supervised manner.

B. Pairwise Features

To discriminate a pair of candidate patches as either

matching or non-matching, a bidirectional feature is required.

For pragmatic reasons, we simply compute the absolute

difference between each element of the two patch descriptors

as follows:

di,j = |di − dj | (1),

where di,j is a vector representing the pairwise descriptor

computed from the descriptors di and dj extracted from



detection patches i and j respectively. A comparison of

various descriptor extraction techniques and methods for

constructing pairwise feature vectors is beyond the scope

of this paper, so unless stated otherwise this is the pairwise

feature descriptor used throughout this work.

C. Affinity Metric

The affinity is modelled with a linear logistic regression

classifier [22] and trained on a set of candidate patch pairs.

Given a descriptor describing the appearance of each patch,

the goal is to learn which features within the descriptors

are most informative for discriminating between a pair of

matching and non-matching patches. The affinity model

approximates the probability that two patches match denoted

by:

pa(m|di,j) =
1

1 + exp−(θTdi,j+b)
(2),

where θ denotes the weights corresponding to each feature

and b is a bias term. Both θ and b are efficiently optimised

through Stochastic Gradient Descent (SGD) on a set of

matching and non-matching pairs.

D. Collecting Initial Pairs

As with any classification problem, a set of training

samples is required in order to train the affinity model. It

is desirable to have a means of collecting training samples

in any new environment for which this system is deployed

for life-long learning. In the contexts of visual tracking, we

can rely on the mutual exclusion constraint to gather non-

matching pairs from each frame. Similarly, an initial set

of positive pairs can be collected using optimal bipartite

matching across frames and conservatively keeping only

high confident matches. To achieve this however, an initial

measure of similarity is required.

The cosine similarity metric is used as an initial measure

of affinity since it possesses several desirable properties,

including:

• When features are constrained to positive spaces, the

cosine similarity is bounded to interval [0,1]. This

reflects the probabilistic output range for our desired

affinity model.

• Computation of cosine distance does not require expen-

sive modelling of the data distribution, i.e. Mahalanobis

distance.

• Considered to be more stable in higher dimensions than

other measures based on Minkowski distance.

Fig. 2 shows that the cosine similarity metric is a reason-

able measure as its maximal match is generally the same

object. However, as the cosine similarity rapidly decays

with increasing temporal windows we restrict this initial

set of positive matching to adjacent frames. This initial

set of samples is used to seed the affinity model with a

single round of SGD. Next, we describe how these frame-

to-frame associations are used to learn an affinity measure

for estimating the matching likelihood over multiple frames.

Fig. 2. A comparison between cosine similarity and the learnt affinity
model after three iterations on a set of 200 tracklet patches of pedestrians
taken from the KITTI benchmark [23]. The lower triangle represents
the ground truth matching where the detections have been grouped and
reordered such that each red block represents an instance of an object. The
upper triangles show the affinity estimate (top row) and chained affinity
(bottom row). This comparison demonstrates that having a near binary
estimate is important in long association chains. Best viewed in colour.

E. Association Chains

Using the initial affinity model as a similarity measure for

frame-to-frame associations, we seek to extend its capability

to match more challenging examples with higher variation

as observed over larger temporal windows. To achieve this,

we explore the frame-to-frame associations to incrementally

grow a chain and select pairs along this chain to reinforce

the affinity model. This process is provided in Algorithm 1

with key points described in this section.

Using the probability chain rule, the probability that two

non-temporally-adjacent detections represent the same object

can be modelled as:

pc(m|di,j) =

j−1∏

t=i

pa(m|dt,t+1). (3)

This chained affinity essentially captures the joint proba-

bility that all associated detections in the tracklet segment

[i, j] belong to the same object. As the temporal duration

between the two detections i and j increases, there is a

monotonic decrease in the chained affinity, accurately cap-

turing the growing uncertainty. Put another way, the chained

affinity has an upper bound which is less than the minimum

link affinity along the chain. This is important in identifying

the temporal boundary of an objects existence as shown in

Fig. 2.

By exploring the tracklet history, errors in the direct

affinity measure can be compared to the chained affinity

and used to collect additional positive training samples over



Fig. 3. Three tracklets where colour denotes object identity. By exploring
the tracklet, detection i in the current frame can be linked to detection j

several frames before by using the chained affinity to create a new positive
sample pair (i, j). Similarly, since j and k share the same frame we can
also gather a non-matching pair (i, k).

larger temporal windows. To prevent learning from poten-

tially incorrect matches, only confident positive pairs are

collected as measured by comparing the chained affinity to a

threshold δ (line 6 of Algorithm 1). These samples are used

to reinforce the affinity model through incremental learning

– causing the frame-to-frame direct affinities to approach 1 –

resulting in a reduction in the decay of the chained affinity –

and ultimately increasing the chain for gathering additional

samples.

Consistently adding new examples of positive matches

from the temporal history can lead to an imbalance of the

negative to positive ratio. The common remedy of increasing

the weighting ratio between the negative and positive classes

can be limiting as it is often difficult to estimate the ratio

ahead of time. To alleviate this dissension, we build off the

association chain affinity introduced in the last section to also

find additional non-matching examples over longer temporal

windows. The association chains are also used to collect

additional negative samples to supplement the non-matching

examples of the current frame collected by using the mutual

exclusion constraint.

Given that we have formed a tracklet [i, j] with high confi-

dence, other non-overlapping detections in the same distant

frame can also be used as negative match examples. The

intuition of this is aligned with the notion of self-similarity,

i.e. as the visual appearance of a single object changes over

time so does the relative appearance of that object with

respect to other objects. For example, Fig. 3 shows a matched

tracklet chain [i, j] where the older detection j shares the

same frame as detection k. Given that i matched j with a

confidence of pc(m|di,j), and that j 6= k due to mutual

exclusion, we expect that the direct affinity between i and k

should be low (see lines 14 and 15). This places an upper

limit on the affinity between i and another non-overlapping

detection k from the same frame as j. Errors from the affinity

model which violate this constraint are used as non-matching

samples during the incremental updating of the model.

F. Classifier Balance

Self-supervised frameworks are prone to drift, particularly

where the model learnt is the same model used to gather

examples. The intuition behind the mutual exclusion and

Algorithm 1 Exploring tracklets for difficult samples

Input: di ⊲ descriptor of current detection i

Input: ti−1 ⊲ tracklet list matched to detection i

Input: fθ() ⊲ Eqn. 2

Output: X,m,w ⊲ Training inputs, outputs and weights

1: function (di, ti−1, fα)

2: pc = fα(di,ti)
3: for j = reverse iterate(ti−1) do

4: pa = fα(di,j)
5: pc = pc ∗ fθ(dj−1,j) ⊲ Eqn. 3

6: if pc(i, j) < δ then

7: break

8: if pc > pa then

9: X ← di,j

10: m← 1
11: w← (pc − pa)

12: for each k ∈ frame(j) do

13: if overlap(j, k) ≡ False then

14: pn = 1− fθ(di,k)
15: if pc > pn then

16: X ← di,k

17: m← 0
18: w← (pc − pn)

return X,m,w

bipartite matching constraints offer some robustness to drift

by selectively rejecting potential pairs which violate these

constraints. However, the bipartite property assumes a one-

to-one matching which does not factor in situations where

objects enter or leave the scene and/or the detector misses

or introduces false positives. These situations are actively

handled by further rejecting matches if their affinity is

less than 50%. If the affinity model is incorrect with this

prediction, i.e. the pair are truly matched then this small

failure can lead to severe consequences. This situation occurs

if the model becomes negatively biased, which generates a

ripple effect where the tracklet is broken, thus limiting the

positive feedback effect of the association chain reinforce-

ment causing the model to become further negatively biased.

Not all errors are created equally!

The key to combating this bias problem is in the placement

of importance for the samples collected. Lines 11 and 18

of Algorithm 1 weight the positive and negative samples

respectively. Both of these were vetted by first checking if

the affinity model created an error by comparison with the

chained affinity. This weighting of samples by the amount of

error creates a balanced interplay between the positive and

negative collection of samples, keeping the model neutral.

Finally, the samples collected over the test sequence are

then used to retrain the logistic regression classifier. This

improves the affinity model and ultimately enhances the per-

formance of the Hungarian algorithm in assigning the frame-

to-frame associations during the tracklet building process.



IV. EXPERIMENTS

The effect of this learnt affinity method is evaluated in the

context of tracking-by-detection on various MOT benchmark

sequences described in [24]. This MOT benchmark provides

a unified framework for evaluating different multiple object

trackers over a variety of sequences filmed from different

viewpoints, with different lighting conditions, and different

levels of target density.

In this experiment, we used the supplied detections pro-

vided with the dataset which where generated using the ag-

gregated channel features (ACF) detector [25]. From each de-

tection bounding box, we use the deep 16-layer convolutional

network of [26] as a descriptor extractor. Each detection

patch is resized to 224×224 and propagated forward through

13 convolutional layers and one fully-connected layer to

produce a 4096 dimensional feature to represent the visual

descriptor.

Both the Hungarian matching and logistic regression

model implementation were from the scikit-learn toolkit [27].

Our unoptimised, single threaded python implementation of

this tracker runs at 3.7 frames per second on a 2.5 GHz

intelTM i7.

Table I shows the performance of the proposed method

using the widely accepted CLEAR MOT metrics [28] eval-

uated with a 0.5 intersection over union threshold. The

Multiple Object Tracking Accuracy (MOTA) combines all

false positives, false negatives, and identity switches into

a single number, and Multiple Object Tracking Precision

(MOTP) measures the average distance between the ground

truth and the tracker output. For both the MOTA and MOTP a

higher value represents better performance. The ID switches

indicate the total number of times a true object has switched

identities according to the tracker output following the strict

definition in [14]. Other metrics listed are the False Alarms

per Frame (FAF), Mostly Tracked (MT) and Mostly Lost

(ML) metrics along with the number of False Positives (FP)

and False Negatives (FN). The number of Ground Truth

object (GT) is also shown for each sequence.

The results are split into training and test sequences. It is

important to note that the ground truth labels were not used

within the self-supervised procedure. Decisions on selecting

hyper-parameters such as the minimum confidence threshold

δ and logistic regression regularisation were selected to in-

crease the MOTA on these training sequences. The minimum

confidence threshold δ = 0.9 was found to give best results

on the training sequences.

We also include the results of other tracking methods

discussed in Section II. Namely a general tracking-by-

detection method that uses the Hungarian algorithm TBD

[2] and two affinity learning based methods: TC ODAL

[16], LDCT [5]. When considering the key MOTA score our

approach performs quite favourably to the related method

affinity methods indicating that our self-supervised approach

is able to correctly adapt to the data observed. However, it

is important to note that several of these sequences involve

a dynamic camera. This heavily impacts the overall MOTA

score for LDCT [5] which focuses primarily on applications

with a static camera. Our method also achieves comparable

results to a purely motion based technique [6], indicating

that appearance is adequate in object tracking and could be

treated as an independent low level tracker if combined with

a motion based tracker.

Qualitative results are shown in Fig. 5. The vertical lines

indicate an ID switch. With closer inspection (see Fig. 4),

many of these are caused by a duplicate detection or false

positive in a frame adjacent to a object entering of leaving

the scene. Since this technique only matches detections in

adjacent frames using visual appearance, ID switches and

fragmentation errors are to be expected. Nevertheless, given

the large number of tracklets and frames, the affinity model

produces accuracy data association in the majority of frames.

Furthermore, the white circles in Fig. 5, show detections

which were not matched to either the previous or next

adjacent frames. In the PETS sequence, it is obvious that

these detections correspond to a stationary object which are

actually false positives generated by the low level detector.

This indicates that temporal inconsistency could be used as a

cue for false positive detections which are implicitly handled

within this technique as they are not matched to any object

tracklet. A clear downside however is the amount of track

fragmentation. This is caused by the frames where an object

is miss-detected or when two detections cover an object

creating a new tracklet. These limitations indicate that this

method could be further improved if combined with motion

based models.

Fig. 4. Frames 74, 77, and 80 of the KITTI-17 sequence showing a false
positive in the top frame getting reassigned to an actual pedestrian emerging
from behind a foreground pedestrian. Best viewed in colour.



TABLE I

PERFORMANCE OF THE PROPOSED APPROACH ON MOT BENCHMARK SEQUENCES.

MOTA↑ MOTP↑ FAF↓ GT MT↑ ML↓ FP↓ FN↓ ID sw↓ Frag↓

Train Sequences

TUD-Stadtmitte 53.8 65.6 0.90% 10 50.0% 0.0% 146 348 40 33

TUD-Campus 35.7 70.6 0.34% 8 12.5% 12.5% 51 157 23 25

PETS09-S2L1 67.7 71.4 0.87% 19 78.9% 0.0% 648 603 193 152

ETH-Bahnhof 29.3 73.4 1.52% 171 23.4% 37.4% 1544 2121 165 208

ETH-Sunnyday 30.9 76.2 0.29% 30 10.0% 50.0% 118 1104 61 73

ETH-Pedcross2 7.9 71.3 0.17% 133 0.0% 85.0% 173 5543 54 78

ADL-Rundle-6 25.4 71.8 2.09% 24 4.2% 8.3% 974 2590 174 160

ADL-Rundle-8 10.9 72.4 2.51% 28 10.7% 39.3% 1653 4213 178 187

KITTI-13 5.8 70.9 0.47% 42 4.8% 38.1% 327 355 36 29

KITTI-17 48.0 70.8 0.14% 9 0.0% 11.1% 44 292 19 21

Venice-2 13.3 72.6 3.81% 26 11.5% 19.2% 2421 3591 177 164

Overall 24.5 72.1 1.43% 500 14.6% 45.6% 8099 20917 1120 1130

Test Sequences

TUD-Crossing 51.2 73.0 0.2% 13 15.4% 15.4% 39 459 40 50

PETS09-S2L2 27.5 70.6 1.0% 42 0.0% 26.2% 449 6153 385 359

ETH-Jelmoli 32.9 73.2 0.6% 45 13.3% 28.9% 283 1334 86 98

ETH-Linthescher 15.4 74.1 0.1% 197 1.5% 76.1% 94 7369 90 103

ETH-Crossing 19.6 74.7 0.1% 26 7.7% 65.4% 13 783 10 10

AVG-TownCentre 13.3 70.0 1.0% 226 1.3% 61.1% 442 5637 118 152

ADL-Rundle-1 5.1 71.3 7.0% 32 15.6% 21.9% 3503 5010 321 306

ADL-Rundle-3 18.1 71.8 3.9% 44 6.8% 22.7% 2420 5523 385 261

KITTI-16 13.9 72.1 0.5% 17 0.0% 23.5% 105 1279 80 73

KITTI-19 13.5 66.5 1.1% 62 6.5% 30.6% 1128 3266 227 326

Venice-1 12.5 71.9 1.7% 17 0.0% 41.2% 757 3120 117 134

∗Proposed method Overall 17.0 71.2 1.6% 721 3.9% 52.4% 9233 39933 1859 1872

⋄TC ODAL [16] Overall 15.1 70.5 2.2% 721 3.2% 55.8% 12970 38538 637 1716
⋄LDCT [5] Overall 4.7 71.7 2.4% 721 11.4% 32.5% 14066 32156 12348 2918
⋄TBD [2] Overall 15.9 70.9 2.6 721 6.4% 47.9% 14943 34777 1939 1963

†SMOT [6] Overall 18.2 71.2 1.5% 721 2.8% 54.8% 8780 40310 1148 2132

∗ Purely appearance based
⋄ Position and appearance based
† Purely motion based
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Fig. 5. Spatial-temporal representation of the tracklets discovered in a low target density setting (left) and high density setting (right). It is important
to note that frame-to-frame matching was performed using appearance affinity making it robust to complex dynamics as observed in the PETS09-S2L1
sequence. Near vertical lines indicate an ID switch. Best viewed in colour.



V. CONCLUSION

In this paper we have proposed a method to learn a visual

appearance affinity model for the problem of associating

object detections across video frames. The proposed method

exploits the sequential nature of video sequences to collect

additional training data as new frames arrive and explore

existing associations for additional training pairs. We show

that this affinity model can efficiently be updated from

the test data without explicit labelling enabling life-long

learning. Experimental evaluation shows that this appearance

based affinity model is capable of operating as the primary

association score for multiple object tracking. In future work,

we intend on extending this affinity model to perform online

tracking and learning. Additionally, incorporating motion

information and tracklet merging strategies offer potential

avenues for reducing track fragmentation.
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