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Abstract

This thesis presents vision based detection and tracking techniques which are suitable for both
dynamic and outdoor applications with a moving camera. Existing detection and tracking
algorithms rely on strict assumptions — static camera, known scene geometry, or pretrained
appearance models — preventing their deployment in new environments. While considerable
progress has been made with supervised appearance models, their performance is ultimately
governed by biases contained in the training data which are often limited and frequently differs

from the data observed when deployed.

A vision based detection and tracking system should be capable of identifying similar
objects without pretrained appearance models, while also being robust to distracting background
objects. Rather than focusing on training supervised appearance models, this thesis draws on
the notion of spatial and temporal consistency to facilitate the use of self-supervised approaches
which can learn to adapt their models from the continuous stream of unlabelled video data. This
allows the model to learn the context specific nuances in visual appearance for dynamic and

unstructured environments with minimal human supervision.

To achieve this goal, three contributions are made. Firstly, a method is presented to detect
objects which move independently of the camera motion by identifying and clustering non-rigid
keypoints. These motion clusters are then used to incrementally correct an appearance based
classifier, allowing it to adapt for new and unseen object appearances. Secondly, the challenge
of background distractors in a novel environment is addressed where two methods are presented
for modelling the background appearance from a large set of negative only images. Fusing these
background models with a pretrained object detector demonstrated superior performance when
deployed in a novel environment, particularly with regards to distracting background objects.
Thirdly, a framework for associating detections across frames is presented that exploits spatial

and temporal constraints, enabling life-long improvement through self-supervised learning.
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Chapter 1

Introduction

Autonomous mobile equipment is increasingly becoming prevalent in several field applica-
tions, including agriculture, forestry, mining and transport. A critical sensing capability for
autonomous equipment is the ability to detect and track other mobile agents including humans.
Due to the highly dynamic nature of typical situations surrounding a mobile plant, a high level
of situational awareness is required which includes robust sensing of the number, location and
velocity of nearby objects. Inspired by human perception and its natural ability to identify po-
tential hazards using primarily vision, this thesis explores the utility of vision based approaches

to detect and track other nearby objects.

Computer vision has the potential to be the Swiss army knife of robotic perception with
a proliferative set of capabilities including but not limited to: 3D scene reconstruction, place
localisation, semantic scene segmentation, recognition, object detection and tracking. While
computer vision has successfully been applied in structured environments such as indoors
[Castro et al., 2004, Marron et al., 2006] and urban areas [Cornelis et al., [2008], extending
this capability to outdoor and unstructured environments remains a challenge. This research
focuses on developing computer vision techniques specifically for object detection and tracking
without making assumptions about the scene or objects that have limited the deployment in

novel environments.

The primary responsibility of a detection and tracking system is to gather and maintain
an estimate of the current state of external objects. This is of particular importance in many
driver assistance systems and autonomous vehicle applications where the potential of collisions

are a concern. As a result of the race to put autonomous vehicles on main roads, both the
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detection and tracking problems have become an increasingly active area of research within the
robotics community. While significant progress has been achieved with high resolution laser
range finders [Yang and Wang, 2011]] and detailed maps [Ferguson et al., 2008, [Zhu et al.,

2012]], vision based approaches remain under-utilised.

Visual object detection is concerned with locating instances of a certain semantic class
within the image. Its companion, visual object tracking seeks to continuously locate a specific
object instance across frames in a sequence of images to effectively maintain a temporally
coherent trajectory. Together, these capabilities offer a passive approach to locate and estimate
the velocity of nearby moving objects as required in many industrial applications. For example
in a mining context, it is necessary for a perception system on a haul truck to distinguish between
moving objects (such as other vehicles and pedestrians) from background clutter. Furthermore,
tracking these objects by associating the detections across frames leads to predicting their future

position which is critical in avoiding collisions.

Computer vision based detectors are increasingly employing data driven approaches such as
a classifier to decide whether an image region contains an object of interest or only background
[Dalal and Triggs, 2005]]. These classifiers are typically trained offline using supervised meth-
ods (also referred to as batch learning) where the learnt model is fixed for online deployment.
Training such models requires extensive object labelling which is performed by a human making
it time-consuming and results in models that are generally inflexible to changes. Additionally, in
many real-life scenarios the variation in appearance between images used to train the model and
the data experienced during deployment may increase detection errors. This variation becomes
especially challenging when using a small training set to learn a detector for a large number of

different objects since the number of cases which can be learnt is limited.

Ideally, it is preferable that the appearance models used for detection and tracking are learnt
automatically from the observed environment with minimal to zero human supervision. This
will allow computer vision based detection and tracking systems to be rapidly deployed in new
environments, where their performance increases overtime as they observe the various visual
patterns specific to the environment in which the system has been deployed. This raises the
overarching question of: How can appearance models for object detection and tracking be
learnt during deployment? To answer this question, we must first consider how appearance

models are used in existing detection and tracking algorithms and what limits their deployability
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1n new environments.

The next two sections provide a brief introduction to vision based detection and tracking

where specific gaps are identified leading to three open research questions.

1.1 Visual Object Detection

The aim of visual object detection is to locate the multiple instances (if any) of a specified object
type within the image boundary. Many classical [Dalal and Triggs, {2005, |Viola and Jones,[2001|]
and modern [Benenson et al., 2013} 2012, Dollar et al., 2014]] detection algorithms employ the
popular top-down sliding window paradigm which treats a single image as a collection of sub

window images. This is generally described by the following steps:

1. Select a set of sub windows covering every location, scale and aspect ratio that is likely
to contain a potential object.

2. Extract a feature representing the visual appearance of each sub window.

3. Use a classifier based model to label each window as one of a number of known categories

which could be a type of background or an object of interest.

This framework presents two key benefits, firstly, multiple objects are naturally detected by the
multiple window sampling of step 1, and secondly it can be easily adapted for different types of
objects by changing the features and classifier used in steps 2 and 3 respectively. For example,
the classifier can be trained to discriminate between background and faces [[Viola and Jones,
2004]], pedestrians [Dalal and Triggs, 2005, |Viola and Jones, [2003], or cars [Tzomakas and von
Seelen, 1998]]. However, these classifiers generally rely on supervised pretraining within an
offline batch optimisation process, requiring a large set of manually labelled training samples

to capture variation in the feature distribution.

Obtaining comprehensive labelled datasets is generally expensive and often impractical
for specific outdoor applications, especially when considering multiple types of objects, each
with a high variation in visual appearance. In recent years, extensive databases [Deng et al.,
2009, [Fei-Fei et al., 2007, Torralba et al., 2008]] of labelled image data for object classification
have been made available to standardise the evaluation of visual object detection algorithms.
Despite the continuous improvement in performance as measured by these benchmarks, it is

still questionable as to how well this performance translates to real world scenarios [Pinto et al.,
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2008]]. Particularly, as several such benchmark datasets are known to contain various forms of
dataset bias [Torralba and Efros, 2011], their performance is likely to be negatively impacted

when applied to images captured in a different context with different statistical properties.

Differences between the appearances captured in the training data and that observed during
deployment presents a challenge for object detection. Specifically, objects — novel or under-
represented in the training dataset — may go undetected using a pretrained appearance model
alone. Ideally, these models should be updated with new objects during deployment, however

when such models are not able to detect an object, the following question is raised.

1. How to discover objects which may have appearance characteristics unknown by the

detector?

To address this question, motion is explored as an independent visual cue where the ob-
jects of interest are considered to be non-stationary in the environment. Additionally, as this
thesis targets mobile applications, the presented motion analysis techniques are designed to
compensate for camera ego-motion. This allows objects which are moving in the scene to be
discovered independently of any pretrained object appearance model. Furthermore, with the
ability to identify moving objects, missed detections in future frames are reduced by correcting

the appearance model to identify static objects with similar appearance.

Contrary to correcting missing detections, another detection error occurs when background
regions are falsely classified as objects. This is further exacerbated when the detector is de-
ployed in an environment where the background has a different visual appearance to images in
the training set. As it is unfeasible to anticipate all potential background appearances a priori,
it is desirable to adapt the detector from observations made at deployment. This leads to the

following research question.

2. How to adapt an appearance based detector for deployment in new and novel environ-

ments with different background characteristics to the training data?

This thesis addresses this question by exploring background modelling techniques to dis-
tinguish objects of interest from challenging, deployment specific background regions. By

focusing only on images containing background, vast quantities of training data can be collected
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with minimal effort compared to annotating objects. Additionally, the size of the background
training set can be further magnified by considering temporal segments in a video sequence in

combination with selecting multiple region patches per frame.

In this scenario, the number of background images significantly exceeds the number of
object training examples. Retraining a classifier directly on such an imbalanced dataset is likely
to result in a bias towards treating everything as background. While a pretrained detector can
be used to select only challenging background samples [Felzenszwalb et al., [2010], given the

magnitude of the background set of novel images, the challenging patches remain numerous.

The background modelling techniques in this thesis are presented to work in parallel to a
pretrained object detector. This allows the background model to be trained in isolation using
unsupervised techniques to characterise common background appearances which bypasses the
challenges of training on an imbalanced dataset. Finally, a fusion framework is presented
to combine the output of both models and facilitate the adaptation of a detector to handle

distracting appearance features encountered in the new environment.

In addressing both the first and second research questions, techniques are presented for
learning the appearance of novel objects and background respectively. Particularly, these tech-
niques focus on minimising the amount of manual supervision required to deploy vision based
detection into new environments. To achieve this, focus is given to uncovering and exploiting
the implicit structure of video sequence data to characterise objects as anomalies in this struc-
ture. Firstly, geometric constraints are used to define background motion as a rigid structure
where anomalies indicate moving objects. Secondly, unsupervised techniques are explored to
identify common and re-occurring patterns in the background, where anomalies indicate novel

objects which are further resolved with a general pretrained model.

1.2 Visual Object Tracking

Once an object of interest is detected, it is desirable to track the object from frame-to-frame

in a video sequence. Moreover, this thesis considers [Multiple Object Tracking (MOT))| as there

could be multiple objects detected per frame. can be described as associating detections
in the current frame with potentially many track hypotheses constructed from previous frames.

These associations are guided by an assignment cost which considers the similarity between
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current detections and tracked objects.

While visual object tracking has been extensively researched [Li et al., 2013, Wu et al.,
2013) Yang et al., 2011} [Yilmaz et al., 2006]], the majority of what is considered state-of-the-
art in tracking is either designed for single object tracking [Babenko et al., 2010, Hare et al.,
2011} Kalal et al.,[2012, |Pernici and Del Bimbo, [2014] or performed in an offline batch process
where information in future frames can be exploited [Dicle et al., 2013, [Pirsiavash et al., 2011,
Zamir et al., 2012]]. Since this thesis is concerned with the use of tracking for autonomous
applications, it is imperative to handle an arbitrary and dynamic number of objects while also

being constrained to information available only in the current and past frames.

Perera et al.| [2006] and Huang et al.| [2008]] showed that a classical data association [Kuhn,
1955]] technique can be applied to match detections to existing trajectory hypotheses. In this
framework, each detection of the current frame is matched to a single trajectory based on opti-
mising the total assignment cost [Kuhn, [1955]]. The assignment cost is traditionally represented
as the difference between the detected position and a predicted position along the trajectory.
However, these methods rely on accurate motion estimation restricting them to tracking in a
registered 2D ground plane [Perera et al., 2006] or with a static camera [Huang et al., 2008].
Appearance information is increasingly being used to help alleviate these restrictions by es-
timating the probability that two detections to represent the same object, referred to as visual
affinity. This commonly takes the form of employing the Bhattacharrya coefficient [Milan et al.,
2014]] or via normalized cross-correlation [Geiger et al., 2014]. However these affinity models
are fixed, making them sub-optimal since they do not consider deployment specific nuances of

the objects’ appearance.

The aim of the first two research questions is to adapt appearance models by learning
from the deployed environment for detection. This idea can also be applied to estimating a
visual affinity based assignment cost for tracking. Particularly, given the underlying appearance
representation describing detected objects, this thesis seeks an appearance based assignment
cost which is tuned to the specific detections encountered during deployment. This gives rise to

the third and final research question addressed in this thesis:

3. How to adapt the assignment cost using data collected at deployment?

The online and adaptive nature of single object trackers [Hare et al., 2011, [Kalal et al.,
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2012|] make them alluring for this work since they incrementally improve their appearance
models from the data observed during deployment. While these approaches could be extended
to by instantiating a new tracker with different initial conditions from a base detector
[MacCormick and Blake, 1999], issues regarding long-term knowledge retention restrict their
applicability to answering the research question. Particularly, single object trackers learn a
separate appearance model for detecting a specific object instance from other instances of the
same category. Once the object leaves the scene the learnt model loses its value as it was trained

to treat everything - including other object instances - as not the target object.

As data association is at the centre of this thesis addresses the third research question
by formulating the estimation of visual affinity as a binary classification problem where the goal
is to predict if two detections correspond to the same object. In this framework, the training data
is in the form of a pair of detections with their appearance features and a label indicating if they
match. Labels for this data are obtained automatically by exploiting spatial constraints for
non-matching pairs and temporal consistency to find pairs with strong affinity. Finally, as this
classifier models the affinity of any two detections it generalises to MOT| while also enabling

lifelong learning of deployment specific nuances through the self-supervised framework.

1.3 Scope and Contributions

This section describes the research contributions in the areas of vision based detection and

tracking in unstructured environments.

1.3.1 Scope

The goal of this thesis is to investigate methods for passive vision based object detection in

field environments. The work is carried out as part of an|Australian Coal Association Research|

[Program (ACARP)| project which is aimed towards improving the situational awareness of both

in-vehicle and tele-operated drivers in a surface mining context. For this reason, the components
of this research that involves using environmental specific cues, includes experiments that are
focused on surface mining environments. Due to the constantly changing landscape this thesis
focuses on techniques that use as little previous knowledge as possible about the environment

(assumptions of the scene structure, previous build maps, etc.).
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The work outlined in this thesis focuses on using computer vision as the sole sensing modal-
ity with the objective to detect and locate multiple objects within a scene and maintain individual
object identities across frames. For the methods presented where the main contributions are
broadly applicable (e.g. object tracking), standard publicly available benchmark data was used
to facilitate fair comparison to existing literature. The integration of this work with other sensing
technologies or into a complete collision avoidance solution is beyond the scope of this thesis

and left for future work.

1.3.2 Contributions

This thesis is presented in the form of a thesis-by-publication where the main methodology

chapters are composed using related research publications as follows.

In Chapter 3] this thesis addresses the first research question of: How to discover objects
which may have appearance characteristics unknown by the detector? Specifically, a motion
clustering based approach is presented for object detection that operates independently of pre-
trained appearance models. Multi-view geometry is used to model camera motion and represent
the background as the main rigid structure while outliers are clustered and filtered to locate
independently moving objects. These motion clusters were further used to learn online an
appearance based detector for discriminating between multiple newly discovered objects along
with the background. This chapter is composed of the paper titled “Online Self-Supervised
Multi-Instance Segmentation of Dynamic Objects”, which is published in the proceedings of
the International Conference of Robotic Automation in 2014. This includes the following

contributions:

e A motion clustering approach to identify independently moving objects in the scene. This
method is able to identify any number of objects [Ester et al.,|1996] and is able to handle
the case of a moving camera [Guizilin1 and Ramos, 2013]].

e A self-supervised learning framework that incrementally adapts a multi-class classifier to
discriminate the individual objects from each other and the static background.

e The use of similarity between the clustering output and a multi-class classifier for assign-

ing temporally consistent labels enabling the continual adaptation of the classifier online.

Chapter [ of this thesis describes two background modelling approaches that aims to charac-

terise the appearance of the main semantic categories that make up the background. The chapter
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contains a published conference paper and an accepted journal paper. The first modelling
approach is published in the paper titled: “From ImageNet to Mining: Adapting Visual Object
Detection with Minimal Supervision” and was presented at the International Conference on
Field and Service Robotics in 2015. This work is extended with an alternative model suited for
Bayesian fusion as presented in the accepted paper titled: “Background Modelling for Adapting
to the Deployed Environment” which is to appear in the Journal for Field Robotics. Together
these papers address the second research question: How to adapt an appearance based detector
for deployment in new and novel environments with different background characteristics to
the training data? Where the background model is used to adapt a generic state-of-the-art[DCN]|
detector. This was demonstrated in a mining context where the environment is visually different
from many of the datasets for which a pre-trained classifier is trained. This chapter provides the

following contributions:

e An investigation of a state-of-the-art detector [Girshick et al., 2014]] originally tuned
for internet image (ImageNet) data and applied to object detection in the unstructured
environment of an open pit mine.

e Adaptation of a detector by formulation of a novelty based detector using a back-
ground model learnt by clustering intermediate features.

e A Bayesian approach to fusing the discriminative power of a modern detector with

the novelty likelihood modelled using the background model.

In Chapter [5 appearance based descriptors are extracted from the detector in a similar
fashion to the background model but instead purposed for the task of data association in a
tracking framework. Additionally, by leveraging spatial and temporal constraints, a motion
invariant appearance model for measuring similarity between these descriptors is learnt allowing
for detections to be associated across frames. This overall tracking framework satisfies the third
research question: How to adapt the assignment cost using data collected at deployment? The
details of this framework is presented using the paper titled: “ALEXTRAC: Affinity Learning
by Exploring Temporal Reinforcement within Association Chains”, which is published in the
proceedings of the International Conference of Robotic Automation in 2016. This paper forms

the content of Chapter [5and offers the following contributions:

e The modelling of visual affinity with a probabilistic classifier. This is used to assign

detections in the current frame to existing objects.
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e A method for exploring temporal history of associations to gather matching examples
with high variance to improve classification in such cases. This provides a source of
positive training examples — without explicit labelling — to facilitate self-supervision.

e An online approach for balancing classifier bias by automatically collecting non-matching

examples using spatial co-existence constraints.

The contributions outlined above address each of the research questions as a set of publica-

tions to form the methodology chapters of this thesis.

1.4 Thesis Outline

The remaining chapters of this thesis are outlined below.

Chapter 2] contains a review of relevant literature covering various sub-components related
to vision based detection and tracking with particular focus given to methods suited for mobile

platforms and methods which adapt to changes in visual appearance.

Chapter 3| presents a novel motion clustering based approach to detection with no pretrain-
ing. This method exploits geometric constraints to model the rigid background motion in a
video sequence while simultaneously detecting independent moving objects. A multi-class
classifier is continuously updated using information from the motion clusters to segment the
objects from the background and also maintain object identities across frames. This method is
applied to vehicle mounted and mining video sequences to demonstrate the systems ability to

learn object models from the deployed environment.

Chapter [] presents an appearance based detector that adapts a pre-trained detector
to a different domain by incorporating a novel background model. This background model is
constructed from a large reservoir of patches extracted from background only image sequences
requiring minimal annotation effort. At test time, detections are validated using its similarity to
the background model and is shown to dramatically reduce the false positive rate with only a
minor drop in recall. Two variants of the background model are proposed and investigated
for their improvement of the detector in a mining environment. Furthermore, a Bayesian
fusion framework is proposed which is demonstrated to provide the best detection performance

compared to the sub components.

Chapter [5] develops a tracking approach based on the learning of an affinity model that
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measures the similarity of two detections. This proposed method exploits both spatial constrains
and temporal consistency to actively model the pairwise similarity between detections with a
probabilistic classifier. The output of this model can be inserted into any tracking-by-detection

framework to improve data association in any arbitrary environment.

Chapter|[6|provides a discussion of the presented work, conclusions drawn and directions for

future work. This chapter also includes a summary of the key contributions made in this thesis.
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Chapter 2

Background and Related Work

This chapter presents an overview of existing research in the areas related to computer vision
based detection and tracking. While the primary focus is on learning to adapt to the visual
changes in unstructured environments, this chapter also discusses some of the theory underlying
both multi-view geometry and pattern recognition using machine learning techniques as these

concepts have a critical role in the development of this research field as a whole.

A brief survey of visual feature representations is provided in Section [2.1.1] This includes
both basic features such as colour and texture to more complex hand-crafted visual features tra-
ditionally used in pattern recognition. While in recent years data driven feature representations
have surpassed the performance of hand-crafted features in many vision related tasks, this brief
survey provides some historical context and serves as a light introduction to the later described
data driven features. Additionally this section covers how these features are used to describe

and identify distinctive keypoints in an image.

Section [2.1.2] addresses how keypoints with their respective features are matched, either to
the same point in a different frame or to a database of features which hold additional information
regarding what the feature may represent. This section is further broken down into relevant
types of matching with a discussion on the relationship between geometric constraints and

computation complexity.

Section describes the principals of machine learning (a.k.a. data driven) techniques
for identifying specific patterns. These techniques frequently form a basis for detection and
tracking methods discussed later in this chapter. This includes a brief overview of

based learning architectures that have recently made a profound impact to computer vision.

17
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Issues around availability of training data and specificity for industrial environments are also

discussed.

Various formulations of visual object detection are discussed in Section [2.2] This section
details how combinations of feature representations, feature matching and machine learning
principals are used to identify and locate objects of interest within both still images and video
sequences. While detection has long been a topic of research, particular focus is given to
machine learning based visual detection methods covering both unsupervised and supervised
approaches. For completeness this section explains common detection evaluation metrics which

are used in later chapters of this thesis.

Section [2.3|addresses the issue of maintaining object identities overtime in a video sequence
for object tracking. This includes the problems of data association, motion prediction and the
accumulation of appearance information. Various approaches are compared by considering
their functionality and their limitations. For completeness this section contains tracking metrics

which are used for evaluation throughout the literature and in later chapters of this thesis.

Section [2.4{provides a discussion about the research reviewed in this chapter. It summarises
some of the major trends in vision-based detection and tracking along with their application
to challenging outdoor environments. Finally, this section concludes by positioning the work

presented in this thesis with relation to the observations drawn from the prior literature.

2.1 Background

This section provides a brief overview of basic computer vision and machine learning concepts
used in the related work listed in the next section and also in the later chapters of this thesis. A
reader familiar with computer vision and machine learning may choose to skip to Section [2.2]
where the work of this thesis is positioned among existing detection literature. The background
concepts of this section are broken into appearance feature representations, matching across

views and machine learning methods.
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Figure 2.1: Geometric representations of the RGB (left), HSV (middle) and UV (right) of the YUV colour spaces.

Reproduced from [Trifan et al.I, 2013].

2.1.1 Appearance Feature Representations

Extracting a feature vector which represents visual appearance forms the basis of many detec-
tion and tracking techniques presented later in this chapter. This section provides an overview
of various visual representations used for describing appearance within an image. The types of
representations can be partitioned into either basic visual cues such as colour and texture, or as

a more complex hand crafted appearance descriptor.

Colour and Texture Cues

Intuitive and simple visual attributes such as colour and texture play a key role in how humans
describe the visual appearance of their surroundings. For example, in a mining context, the
background is visually dull while foreground objects are purposely visually apparent in contrast
through the use of bright and salient colours. For example, the background can mostly be
described as coarsely textured rock and clear blue sky, while foreground objects include yellow
truck, white light vehicles and personnel wearing orange shirts. Colour and texture based

features are easy to compute with many methods designed to tolerate changes in illumination.

Colour cameras capture the light falling onto the sensor by using [Red, Green and Blue|

[RGB)| colour filters to separate the light across three channels. In structured environments,
if the colour of the object of interest is known a priori then simple colour filters can be con-

structed to segment the object from the background [Trifan et al.,[2013]]. However, in outdoor

environments, due to the various lighting conditions and materials observed, RGB|becomes less

informative when distinguishing the semantic class of objects in the scene.

Several colour spaces have been proposed over the years with the aim of separating the
reflectance properties of the objects surface from the spectral power distribution of the illu-

mination source 2003]]. Other than the default [RGBJ other common colour spaces



20 CHAPTER 2. BACKGROUND AND RELATED WORK

used in computer vision applications include [Hue, Saturation and Value (HSV)| [luma (Y)|

land chomiance (UV) (YUV)| [Reinhard and Pouli, [2011]. Geometric representations of these

colour spaces are shown in Figure 2.1l Alternatively, [Van De Weijer et al.| [2007] map the
coordinates to linguistic colour names and demonstrate improvements in image retrieval
applications. Variations caused by shadows in natural daylight have also been modelled to
remove the lighting component from the material property components of the surface reflections
[Corke et al., 2013]]. However, shadows may also be informative as Tzomakas and von Seelen

[1998] exploited the shadows created by vehicles to aid detection.

The texture of an image region can provide an alternative visual cue to indicate the surface
material and consequently lead to higher level classification. Gabor [1946] first characterised
texture as a set of functions defined by spatial frequency and orientation, which also describe
the fundamental human attentive responses to patterns [Julesz and Bergen, |1983|]. |[Leung and
Malik [2001]] defined a discrete representation as a set of linear Gaussian derivative filter kernels
that are convolved with the input image (see Figure 2.2). (Ojala et al| [2002] proposed an

alternative approach that produces a compact binary representation by comparing the centre

pixel intensity with surrounding image locations. These [Local Binary Patterns (LBP)s can

be efficiently computed and further reduced to 36 unique patterns after considering rotation

invariance (see Figure [2.2)).

When representing an image region, a histogram of colours can be constructed from the
colour values of the pixels within the region [Bradski, |1998, [Swain and Ballard, (1990, Town
and Moran, 2004]. This characterises the colour distribution found in a selected region which
can be compared to other regions using either the intersection [Swain and Ballard, 1990] or
using the y? (chi squared) test statistic [Hafner et al., |1995]. Another traditional method of
representing an image region using colour is to compute the mean and covariance [Fieguth and

Terzopoulos, |1997]].

Several studies have shown that combining colour and texture results in improved perfor-
mance for tasks such as segmentation [Brox et al., 2003, |[Micusik and Pajdlal, 2007] and tracking
[Serby et al., 2004, Town and Moran, |2004]. Alvarez and Vanrell [2012] investigated the co-
occurrence of texture and colour types in a database of texture images to develop a joint rep-
resentation that improves surface classification. [Khan et al.| [2013]] also showed that evaluating

colour and texture visual cues independently and then combining them before classification
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Figure 2.2: Texture representations. Top: 2D kernels representing 48 different Gaussian filters as presented in
[Ceung and Malik},[2001]]. Bottom: The 36 unique and rotationally invariant 8-bit local binary patterns. Reproduced

from 2002}

achieves superior results in categorisation tasks.

Hand Crafted Descriptors

For a given image location, appearance properties of the local neighbourhood are encoded to
form a descriptor. Descriptors express the visual information of a point by forming either
a histogram or vector containing various attributes. While a rudimentary descriptor can be
formed by considering a histogram of the previously discussed colour and texture cues, this
section discusses hand crafted features specifically designed for salient and distinctive image
locations called keypoints. Several methods have been designed to optimise repeatable matching
of keypoints under different viewing and lighting conditions. Another objective of descriptors
is to capture distinctive attributes of a keypoint to minimise the number of false matches to other

features.

Arguably the most popular feature detector and descriptor is Lowe’s [Scale Invariant Feature)
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(Iranstorm (SIFT)| approach [Lowe, 2004], which set a significant benchmark for accuracy

feature matching offering superior distinctive and transform invariant characteristics at the
expense of computational cost. Other commonly used features include: Speeded Up Robust
Features (SURF) [Bay et al., 2008, Centre Surround Extrema (CenSurE) [Agrawal et al., | 2008]],
Features from Accelerate Segment Test (FAST) [Rosten and Drummond, |2006] and Maximally
Stable Extremal Regions (MSER) [Matas et al., |[2004].

Recently, a diverse array of binary descriptors have also been proposed to further address
storage and computation complexity of descriptor extraction including: Binary Robust Inde-
pendent Elementary Features (BRIEF) [Calonder et al., 2010], Oriented FAST and Rotated
BRIEF (ORB) [Rublee et al., 2011]], Binary Robust Invariant Scalable Keypoints (BRISK)
[Leutenegger et al., 2011] and Fast Retina Keypoints (FREAK) [Alahi et al. 2012]. The
descriptor vectors extracted by these methods are directly compared to other descriptors by
evaluating either the Euclidean distance or Hamming distance for the binary case between two

vectors.

Descriptors are also used to describe a rectangular region within an image. In contrast to
simply using a histogram of colour and texture cues, hand crafted features attempt to charac-

terise the overall shape of the region. |Viola and Jones| [2003|] make use of a cascade of Haar

wavelet features to detect both faces and pedestrians. The [Histogram of Orientated Gradients|

(HOG)| proposed by |Dalal and Triggs| [2005] separates the edge gradients into a grid structure

covering the patch region. When combined with a standard classifier this feature has

demonstrated significant discriminative performance in pedestrian detection.

These hand crafted features aim to characterise the local shape and therefore designed to be
invariant of colour. However, in situations where the colour of the objects of interest is known
and dissimilar to the background context colour descriptors can be used. For example |van de
Wejjer et al.| [2006] propose a concatenation of Hue histogram with the descriptor. Bosch
et al.|[2008] computed the [SIFT|descriptor on all three channels of the colour space before
concatenating them. [van de Sande et al., 2010]] proposed a new colour space derived from the
colour within the image and computed a descriptor in a similar fashion to Bosch et al. [2008]. A
structured evaluation of colour descriptors can be found in either [Burghouts and Geusebroek,

2009] or [van de Sande et al., [2010].
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2.1.2 Matching between Views

Feature matching forms the basis for many visual motion estimators and image recognition

based approaches covered later in this chapter.

Visual Similarity Matching

Many object detection and object tracking methods rely on the matching of image feature
descriptors in the current image with descriptors from a database or the previous image respec-
tively [Lehmann et al., 2009, Leibe et al., 2007, |Pernici and Del Bimbo, 2014]. This is generally
achieved by computing the Euclidean distance between the reference descriptor from the current
image and each of the stored descriptors to find the closest match [Lowe, 2004]]. Due to the large
number of features detected in each image or stored in a database, evaluating the distance for
every potential match is computationally expensive. To address this, various methods have been
proposed in the literature for efficiently restricting search for suitable matches by exploiting data
structures [Muja and Lowe, [2009]]. See [Dhanabal and Chandramathi, 201 1, |Kumar et al., 2008]]

for a comparative review of various nearest neighbour methods.

Optical Flow

Optical flow is a field of computer vision that is generally concerned with the pixel-wise
correspondence between images taken at two different times. This is often used to evaluate
the pixelwise motion between consecutive video frames in a video sequence. The optical flow
problem is considered under constrained as the relative motion of objects in the scene can move
independently of the camera motion. The types of optical flow can be divided into sparse
and dense techniques, where pixel motion is computed for only salient points or every pixel

respectively.

Lucas and Kanade|[1981] pioneered the sparse optical flow by proposing a locally differen-
tiable framework that constrains the problem by imposing smoothness and spatial consistency
assumptions. Since this approach works on a local image patch, it is sensitive to the common
aperture problem created by an ambiguous match along edges. To overcome this, salient
or corner features are selected as the reference points [Shi and Tomasi, 1994, Tomasi and

Kanadel [1991]]. Later, Bouguet [2000] proposed a hierarchical pyramid structure for matching
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pixels with motion greater than the pixel neighbourhood used in [Lucas and Kanade, 1981].
Alternatively, the matching of rich descriptors discussed earlier could also be used to estimate

keypoint displacements across frames [Guizilin1 and Ramos| 2013].

One of the earliest and successful methods for dense optical flow is that of Horn and Schunck
[1981] which combines the brightness consistency assumption with a first-order Taylor series
approximation. This method is optimised over a number of iterations, where the optical flow
is constrained with a form of regularisation that penalises large displacements. More recent
approaches robustly deal with large displacements by matching [Brox and Malik, |[2011]] or
[Liu et al., 2008, 201 1] descriptors to avoid local minima and reduce overall computation
time. Another recent approach to multi-frame optical flow based on motion layers [Sun et al.,

2012] offers a favourable approach to motion segmentation towards moving object detection.

Epipolar Geometry

The epipolar geometry is the intrinsic projective geometry between two views. It is independent
of scene structure, and only depends on the internal camera parameters and relative pose. The
geometric relationship are encapsulated by the essential matrix for calibrated cameras or more
generally the fundamental matrix. The internal parameters of the fundamental matrix can be
computed from image correspondences alone and is independent of scene structure [Hartley

and Zisserman, 2004].

Computing these parameters in the presence of outliers from independently moving ob-

jects requires a robust estimator. Two commonly used robust estimators are RANdom SAm-|

ple Consensus (RANSAC)| [Fischler and Bolles, |1981] and [Least Median Squares (LMedS)|

[Rousseeuw, [1984]. As these methods generally require high inlier ratios, several improved
variations have been made which maximise the posterior of the solution [Torr and Zisserman,
2000], weight candidates on matching scores [Chum and Matas, |2005] or checking spatial

consistency [Sattler et al., 2009].

2.1.3 Machine Learning

The visual feature representations discussed earlier in Section [2.1.1| can be thought of as data

models while this section introduces algorithmic models for analysing the data extracted [Breiman,
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2001al]. In particular, this section focuses on general machine learning concepts and models
that are commonly used in object detection and tracking. Namely, approaches for unsupervised
clustering and supervised classification. The aim of these techniques is to learn a model that

takes input data and assigns it to one of a set number of categories.

Unsupervised Clustering

In unsupervised clustering the labels are not defined a priori but rather the data is partitioned
based on the structure in the data itself. This assumes that the data naturally forms groups
known as clusters where samples within a cluster are more similar to each other than from
samples from other cluster. While the membership or the number of clusters is unknown, cluster
analysis present techniques for uncovering these clusters, which can be used to group features
based on their similarity. Concretely, data samples could be any of the features mentioned in
Section extracted from the points or regions in an image. It is anticipated that points on
the same object would share visual characteristics as captured by the feature and can be grouped
to discover the extent of the object. Here a few common clustering techniques are introduced

and their capabilities are also illustrated in Figure 2.3

A classical approach to clustering is the k-means partitioning method of Jain and Dubes
[1988] initially select k of the data samples to represent the cluster centroid and then iteratively
alternates between assigning samples to the nearest cluster centroid and updating the centroid
to be the mean of the samples assigned to the cluster. This process is analogous to fitting

a |Gaussian Mixture Model (GMM)| with k£ components to the dataset using the

[Maximisation (EM)| algorithm [Dempster et al., |1977]], while assuming a spherical covariance

for each component. The mean shift algorithm [Comaniciu and Meer, | 2002] assumes a smooth
gradient in the local density of points and uses an uphill climbing strategy to shift the centroid
in the direction of the locally densest region. Unlike k-means this method uses all the points
and only computes the local density defined by a bandwidth parameter. Finally, near duplicate
centroids are merged. From Figure it can be seen that the clusters found using (with the
exception of the agglomerative clustering) tend to partition the data based on their euclidean
(or Mahalanobis distance for the GMM) which disregards the manifold of the data. A common
approach to overcome this is to construct a similarity matrix between all points and using the

eigenvector of this matrix as a partitioning point to split the dataset into two halves [Meila and
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Shi, 2000, Sh1 and Malik, 2000].

Another family of clustering techniques take a bottom up approach by incrementally merg-
ing samples to form clusters according to some merging criteria. The agglomerative clustering
approach proposed by [Sibson, 1973]] initially treats each point as its own cluster and recursively
merges the closest pairs of clusters until a set number of clusters remain. Similarly, Jarvis and
Patrick [1973]] proposed a merging strategy that considers the £ nearest neighbours of each point

and only merged points if they shared a set number of neighbours.

The [Density Based Spatial Cluster Analysis with Noise (DBSCAN)|proposed by [Ester et al.

[1996] considers the local point density as a merging criteria. Beginning with a point chosen
at random, the radial neighbourhood is checked that there are a minimum number of local
neighbours to grow the cluster. If the point satisfied this point density test then it and its
neighbours are used to form a cluster, the neighbours are then checked recursively until no
more neighbours can be added to the cluster. Unchecked sample points are also tested for
a minimum local density and the process continues until all points have been checked. This
technique has many desirable properties such it naturally identifies the number of clusters in the
data, identifies outliers and also forms irregular shaped clusters that follow the data manifold
(shown in Figure[2.3)). Additionally, as it makes a single pass over the data it is computationally
efficient. However, it does require two parameters to define a fixed point density: radius and
minimum number of points. Extensions such as [[Ankerst et al., 1999, Ertoz et al.,|2003] address
this limitation with added computational cost of ordering points by local density or constructing

a nearest neighbour graph.

Alternative methods also attempt to estimate the number of clusters by finding representative
points in the data. Frey and Dueck! [2007] proposed the affinity propagation algorithm is given a
similarity matrix of all pairs of points where messages are exchanged between data points until
a high-quality set of exemplars and corresponding clusters gradually emerges. Constructing the
similarity matrix can be slow, often requiring efficient data structures such as [Muja and Lowe,
2009]] or compressing the data [Ott and Ramos, |2013]]. For specific applications where the data
is dense and represents a real scene, smoothness constrains and projection geometry can also

be used to simplify the search for clustering applications [Bewley and Upcroft, 2013].
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Figure 2.3: Simple comparison of different unsupervised clustering methods on simulated 2D data. Methods
which estimate a representative point/centroids are indicated with a black border. The default number of clusters
is set to two. The runtime is shown in lower right. This plot is best viewed in colour and was generated using code
modified from the scikit-learn python toolkit [Pedregosa et al., [ 2011].

Supervised Classification

Classification is the process of learning a mapping from an input feature vector to one of a set
of discrete outputs denoting the potential classes. This mapping requires a set of training data
where each sample is labelled with its corresponding class. This classifier model can then apply

what has been learnt from the training data to assign new data.

The most basic type of classifiers are binary classifiers which learn to fit a decision boundary
that separates the negative sample data from the positive sample data. One of the earliest sta-
tistical models for separating two populations is that of |[Fisher| [1936] where each population is
modelled as a normal distribution with their own mean and co-variance. The optimal boundary
separating the two distributions is described with a quadratic equation. For the special case

where the co-variance of each distribution are equal this decision boundary degenerates to a

linear hyper-plane that is equidistant to each mean commonly referred to as|Linear Discriminate|

[Analysis (LDA)l When considering only two classes the model learnt can be considered as a

Bernoulli distribution y|z since the dependent variable y is binary. This is typically modelled

with the probabilistic classifier known as logistic regression [Walker and Duncan, 1967]]. |L.

Guyon et al.| [1993] proposed the [Support Vector Machine (SVM)) classifier that maximises a

margin between the samples closest to the decision boundary. This property is reported to give

the SVM]classifier better generalisation performance to unseen data over other linear classifiers
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istic Regression Linear SVM Nearest Neighbors Decision Tree Random Forest

Figure 2.4: Simple comparison of different classifier models on simulated 2D data. The dots represent data
samples from two classes while the shaded area indicates the classifier’s estimated prediction probability. The
classification score is shown in lower right. This plot is best viewed in colour and was generated using code

modified from the scikit-learn python toolkit [Pedregosa et al.,[2011].

[Vapnik, [1998].

Other types of classifiers naturally handle both multiclass and non-linearly separable data

such as |k Nearest Neighbour (kNN)| [Duda et al., 2001] and Decision Tree [Breiman et al.,

1984] classifiers. as the name suggests classifiers estimate the class of a test sample by
considering the distances and frequency of labels among its k& nearest training samples.
however has demanding computational and storage requirements as it needs to store and search
the entire training data which define the complex decision boundary. Decision Trees on the other
hand are compact and efficient binary tree structure that chooses a variable at each step that best
splits the dataset such the final leaf nodes contain mostly items of the same class. The branching
nodes are usually learnt by selecting from a random subset of variables the one with the highest

Gini impurity [Breiman et al., [1984] or information gain [Quinlan, [1986]. Finally, multiple

decision trees can be used in an ensemble known as the random forest [Breiman, 2001b]] where

the mode of the outputs are used to make the final prediction.

A comparison of these supervised classifiers and their decision boundary are illustrated in
Figure 2.4] This comparison also demonstrates that when the data is linearly separable (first
row) any of the basic linear classifiers are suitable. As the data becomes less linearly separable
(last row) the performance of the linear classifiers drop while the more complex classifiers
are hardly effected. When comparing the classification score across the different classifiers,

the nearest neighbour based approach appears to perform favourably in all cases, however this
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Figure 2.5: Visualisation of the 96 filters with kernel size of 11x11 from the first layer of awhich was trained

on ImageNet. Reproduced from [Krizhevsky et al., 2012].

outcome is subject to having sufficient training samples covering the expected data distribution

to be observed at test time. In practice, if the data is not linearly separable, non-linear transform

such as the kernel trick [Hofmann et al., 2008}, Mika et al., [1999]] can be used to potentially

transform the data into a more separable space. However, it is important to note that real world
data is typically very high dimensional, particularly raw image data and visual features can be
extremely high dimensional making it easier to separate linearly. Finally, these classifier models

can be extended to multiclass classification by training multiple classifiers using a one-vs-rest,

one-vs-one or using a softmax cross-entropy loss [Bishop), [2006].

Deep Convolutional Network

Over recent years architectures [LeCun et al., [1989] have made an astonishing impact on
both the machine learning and computer vision communities [Donahue et al., 2013}, [Dosovitskiy

et al., 2014, [Farabet et al., 2013, [Krizhevsky et al., 2012] Razavian et al., 2014] particularly

in the area of image recognition. A consists of multiple layers, each performing a

transformation of their input data in the form of a linear projection followed by a differentiable,
non-linear activation function to produce an output response. A set of weights and biases govern
the linear projection step in each layer which essentially performs an inner product with the
input and the weight parameters. The output responses for each layer forms the input for the
following layer in a feed-forward fashion, where the first input is the data and the last represents

a score for each class.
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The baseline architecture of [Krizhevsky et al.|[2012] consists of eight layers in total with five
being convolutional (convl-convS) and three fully-connected (fc6-fc8). In the convolutional
layers, the weights only connect to a small receptive field in the input, acting like a 2D filter.
Figure [2.5] shows the first layer filters of [Krizhevsky et al., 2012] learnt on real-life images.
Note that these filters contain both colour blob filters and texture like filters similar to the
methods discussed in [2.1.1] These filters are shifted across the lateral dimensions of the input
to perform a 2D convolution. The fully-connected layers on the other hand, remove the spatial
structure of the data by flattening the transformed input before applying an inner product with
their weights to project the entire input into a new high dimensional space. The intuition of
this DCN architecture is that the convolutional layers transform the input into low level visual
descriptors representing local object parts, while the fully-connected layers are responsible for

the high-level task putting the parts together to classify the entire image [Azizpour et al., 2015].

The [Krizhevsky et al., 2012]] architecture consists of around 60 million parameters across
all eight layers which were optimised for classification via deep learning. Deep learning is
the process of first applying a each layer transformation in turn to the input data to produce
the network output. The classification error of the network (or loss) is then used to adjust the
weights by an amount proportional to the error with respect to the layer input. As each layer is

differentiable, the chain-rule enables the error to be propagated back to update the parameters in

all layers. This training process is usually performed with [Stochastic Gradient Descent (SGD)|

optimisation. Given the high number of parameters, [DCNf are prone to over-fitting the training
data. To combat this issue Krizhevsky et al.| [2012] employed a regularisation in the form of
weight decay and novel model averaging technique known as Dropout [Srivastava et al., 2014]].
Additionally, this models ability to generalise to unseen images is particularly due to having an
extensive dataset containing 1.3 million labelled images for training [Domingos, 2012]. This
has also lead to further improvements in image classification by increasing the number of layers
[Szegedy et al., 2015] or both the number of layers and parameters per layer [Simonyan and

Zisserman, [2015]].

Due to the hierarchical nature of the features learnt in , the intermediate responses
have been shown to be very informative for a range of visual tasks beyond the original training
dataset Razavian et al. [2014]. This approach to feature extraction is increasingly being used
to replace hand-crafted features such as in the closely related field of recognition [Ge
et al., 2015, Stinderhauf et al., 2015]]. These approaches do not require retraining of the
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parameters but instead use the discriminative features produced to efficiently lookup a nearest
neighbour or train a simple linear|SVM)| making them applicable to potential online adaptation.
Similarly, a process referred to as fine-tuning is increasingly being used to speed up [DCN]|
training where a pretrained model is reused but the last layer has been replaced to reflect the
specific task. Yosinski et al.| [2014] showed that fine-tuning networks boosts the generalisation

performance as the network retains patterns learnt from a broader range of images.

Datasets and Dataset Bias

Over the years, a number of datasets have been proposed for creating standardised benchmarks
for evaluating different classification techniques. However, when the scope of variability in
these datasets is small or restricted to a single context, the ability of top performing methods
to generalise to real world scenarios is questionable [Pinto et al., [2008]]. While the computer
vision community aims to increasingly grow the size of annotated image datasets, the data itself
may contain biases known as dataset bias. [Torralba and Efros|[2011] showed that across six
different online benchmark datasets, the model trained on a dataset’s training images was also

the best preforming model on that dataset’s testing images.

Several computer vision datasets are compiled using the vast amounts of images taken from
the internet [Deng et al., 2009, Everingham et al., 2009, Fei-Fei et al., 2007, [Torralba et al.,
2008]] which all share a common source of dataset bias. That is, when a human is in control of
the camera when taking the image they typically only take photos of what is interesting, novel
or artistic. This is illustrated with one of the most popular and largest image dataset known
as ImageNet [Deng et al., 2009] (shown in Figure 2.6). Namely, selection bias is indicated
by observing that examples of cars are mostly vintage or race cars. The capture bias is in
the form of having the objects centred in the image and covering the majority of the image.
This object focused capture bias also frequently results on only a single object visible in most
images. The datasets of [Dollar et al., 2009b, Geiger et al., [2013]] where not collected using
internet search phrases or a hand held camera but rather a camera mounted to a vehicle in urban
scenarios. However, [Dollar et al., [2009b] is only annotated for pedestrians and not vehicles
while [Geiger et al., [2013]] contains annotations for people and vehicles but with significantly

fewer annotations.
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car person

Figure 2.6: A subset of images from [Deng et al., [2009] used in the detection task of the ImageNet Large Scale
Visual Recognition Challenge 2014 to illustrate the selection and capture dataset bias.

Self-Supervised Learning

Obtaining a sufficiently large, relevant and unbiased dataset is often impractical, an alternative
solution is to bootstrap a discriminative classifier with unlabelled data. This is desirable as
there is significantly more unlabelled data available than labelled and relevant data can be col-
lected from the deployed environment directly. However, choosing which side of the decision

boundary to position the unlabelled data is equivalent to classifying the data directly.

Literature related to this topic used several terms such as semi-supervised, active learning,
co-training and self-supervised. Semi-supervised learning typically combines an unsupervised
clustering of unlabelled data before using labelled data to assign each cluster a class based

on its label distribution [Rosenberg et al.| 2005, Zhu, 2008]]. Active learning is a related area

where a pretrained machine learning based detector is continuously supervised by asking for

clarification in the form of labels for samples with low confidence [Grimmett et al., 2015

Triebel et al., 2013]. However, this requires that a human oracle is always in the loop. Co-

training replaces the human supervisor with another classifier that is learnt from the different

features that were generated from the same source [Blum and Mitchell, [1998]]. This however

relies on that the features for each classifier are independent from each other to prevent drift,
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which is considered a sub-optimal assumption Kalal et al.|[2012]], Pierce and Cardie [2001].

This thesis focuses on self-supervised learning where a supervisory signal is enforced through
exploiting either geometrical or temporal constraints on the objects within the scene. Unlike
active learning this does not require a human oracle and compared to co-training it is robust to
drift as the constraints are fixed for the life of the learner. Self-supervised learning has shown
success in similar applications, particularly in road or free space estimation [Achar et al., 2011},
Lookingbill et al., 2007, Zhou and [agnemma, [2010]. These methods draw upon scene based
assumptions such as road driving or river scene structure to gather and label samples for training

an appearance based classifier.

2.2 Visual Object Detection

In contrast to recognition which assumes that the images contains one of a known set of object
categories, object detection is the task of locating potentially many objects within the image or
identifying when no objects are visible. Given a set of input features extracted from the visual
data, object detection techniques aim to predict the location of the target object. This section
looks at techniques used to locate the objects and also object recognition techniques for when
the location is given. Additionally, approaches that consider motion to segment background

from foreground are also reviewed as an alternative to appearance based methods.

2.2.1 Locating Objects

Traditionally, object detection is formulated as a classification problem in the well known
sliding window paradigm (previously discussed in Section|l.1]) where the classifier is evaluated
over an exhaustive list of positions, scales, and aspect ratios. This exhaustive list can contain
millions of sub windows that need to be evaluated sequentially. When using a sophisticated
classifier, the computational cost of this approach quickly becomes prohibitive for realtime

applications.

To reduce this computational burden many researchers have looked at how to reduce the
number of windows evaluated by analysing features that capture scale independence [Benenson
et al., 2012, Dollar et al., 2010, Gavrila and Munder, 2006|]. Cascaded approaches [Kalal et al.,

2010, [Viola and Jones| 2001]] are frequently used to speed up detection. The classical |Viola
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and Jones [2001]] approach would only compute features incrementally based on the responses
previously evaluated simple classifiers within the AdaBoost framework [Freund and Schapire,
1997]]. Kalal et al.| [2010] used a three stage cascade employing a more sophisticated classifier
after the majority of candidates were rejected in the previous stage. Additionally, geometric
context of the scene can be exploited to focus compute on the most likely locations and scales

to contain pedestrians [Benenson et al., 2012, Gavrila and Munder, 2006].

In recent years, addressing the reduction of windows to consider in detection has formed
a sub field of computer vision referred to as detection proposals (a.k.a. objectness, object
proposals or region proposals). Detection proposals are considered as a pre-processing step
reducing the millions of candidate windows per image down to hundreds or a few thousand.
Several object proposal techniques are based on the merging of low level segmentation tech-
niques [Alexe et al., 2012, Carreira and Sminchisescu, 2012, Manen et al., |2013, Rantalankila
et al., 2014, \Uyjlings et al., |2013]]. Since these techniques employ image segmentation such as
[Felzenszwalb and Huttenlocher, 2004 as a preprocessing step, their utility as a computational

reduction technique comes with added overhead.

Other techniques, combine simple features with a sliding window based approach that is
designed for speed by taking advantage of efficient data structures such as integral images
[Ziming et al., 2014} Zitnick and Dollar, 2014]. Zitnick and Dollar|[2014]] observed that objects
are typically characterised by the number of contours wholly enclosed by a bounding box.
/iming et al. [2014]] introduce a binarised normed gradient feature which is efficiently computed
on modern computing architectures and used with a simple linear classifier. A detailed
comparison of various detection proposal techniques was recently evaluated in [Hosang et al.,
2014]]. Apart from the computational benefits, detection proposals were recently shown to also

improve detection performance [Girshick, [2015].

2.2.2 Object Recognition Models

In supervised detection the types of objects are known a priori, such as pedestrians or cars.
These techniques are typically designed for a single image where each location is inspected
for the presence of the object of interest. Given a sub-window either selected via a detection
proposal technique or with a sliding window, a fixed length descriptor is then extracted for object

or background classification. As these methods are based on the object’s visual appearance
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(colour, texture or shape) in a single frame, they avoid many issues related to motion modelling
for moving cameras. In a supervised framework, positive images of the target object and
negative background images are presented to a classifier which learns a mapping from the
feature space to the label space. The classifier encodes the decision boundary in appearance

space that specifies if a newly presented window contains the target object of interest.

One of the first successful object detectors is the Viola-Jones detection framework applied
to face detection [[Viola and Jones, 2001]] and later generalised to detect other object classes
[Viola and Jones, 2003]. Their approach used AdaBoost [Freund and Schapire, |1997] to select
a set of weak decision tree classifiers based on Haar wavelet features and order the decision
responses to reject a hypothesis in a cascade structure — focusing computation on regions most
likely to be the object of interest. Dalal and Triggs [2005] harness the expressive power of the
descriptor to train a linear [SVM] classifier which enjoys an order of magnitude reduction
in false positives at the same detection rate over the Viola-Jones detector (as reported by |Dollar
et al.| [2009b]]). More recently, |[Zhang et al.| [2009] also proposed an AdaBoost architecture
using base classifiers with covariance features [Tuzel et al., 2007].

A major limitation of these object recognition based techniques is the requirement of com-
prehensive labelled training and test sets, which captures high variance in visual appearance
caused from viewpoint, deformation and occlusion. For example, Junior et al.| [2009] used
around 9600 positive and a 10000 negative labelled images for training a pedestrian detector
with an additional 9800 images for testing. Moreover, once trained, the boosted classifier cannot
adjust to the particular scenario in which it is employed [Javed et al., [2005]]. To deal with the
viewpoint issue Rybski et al.|[2010] train multiple classifiers, one for each 45° viewing angle of
a car. The deformation and occlusion issues have recently been address with part based models

which describe an object as a collection of parts or visual words.

To overcome the issues of occlusion and non-rigid objects, several deformable part based
models have been proposed [Agarwal et al., 2004} Andriluka et al., 2008, |Azizpour and Laptev,
2012, |Bouchard and Triggs, [2005, Felzenszwalb et al., 2008, 2010, [Leibe et al., 2004]. These
methods capture the spatial relationships between different parts. For example, a persons forso
is positioned below their head and between their left and right arms. The joint detection of
multiple parts and their spatial relationship to each other can be used to improve the detection

performance of the higher level object detections [Felzenszwalb et al., 2010].
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Figure 2.7: An overview of the Region CNN pipeline. Reproduced from [Girshick et al., 2014].

Leibe et al.|[2004] pioneered this field with the fmplicit Shape Model (ISM)|which augments

a codebook of local visual appearance models with a spatial probability distribution defining the

relative offset of the entire specific object class. Wu and Nevatia [2007] learn multiple human

part based classifiers based on edge features before combining the parts into a whole human

detector within[Maximum a Posterior1 (MAP)|estimation framework. Felzenszwalb et al.|[2008]]

formalise the [Deformable Part Model (DPM)| as a hierarchical structure by extracting features

at two scales with the course scale representing objects and the finer representing parts.
[2010] extend this framework to a three layer hierarchy and show that the deeper structure
outperforms the two layer[DPM]and also demonstrating that simpler part structures are sufficient

to obtain strong results.

Another critical issue for object detection is computational cost which limits their value for
realtime detection from mobile platforms. The detector with the best performance run-time

trade-off 1s Dollar et al.| [2010] which replaces multi-scale feature extraction with a set of multi-

scaled classifiers. Other techniques limit the search to specific [Regions of Interest (ROI)| in

the image by utilising stereovision with the ground plane assumption [Bajracharya et al., 2009

Benenson et al., 2012, |Gavrila and Munder, 2006, Howard et al., 2007]].

Given the recent success of the[DCN]based image classification, they have also been applied

to object detection. [Sermanet et al.|[2014]] apply the convolutional layers to multiple scales of a
test image and average the detection scores. |Girshick et al.| [2014] proposed the R-CNN method
that combined the detection proposals of [Uijlings et al., 2013]] with the [DCN|image classifier
of [Krizhevsky et all, 2012] (shown in Figure 2.7). This framework has become a baseline
technique for many recent visual object detection frameworks [Girshick, 2015, He et al., 2014].
Similarly, [Oquab et al.| [2014] use the [Krizhevsky et al., 2012] as the object classifier in a

sliding window fashion to localise objects and generate a heat map over the image for a set
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of semantic classes. They extract patches with various sized windows before upsampling the
window back to 224x244 for the input to [Krizhevsky et al., |2012]. This approach has a
number of inefficiencies, each scaled patch is run through the network end-to-end, while the

up-sampling also generates extra data for small patches without added information.

Farabet et al.|[2013]] uses a more efficient approach where subsampled versions of the input
image is applied and the sliding window is performed intrinsically by the convolutional layers
of their model. To fuse the information from multiple scales they then upsample the resulting
feature maps to the original input size and concatenate the features before classification.
He et al. [2014] attempt to handle scale by directly concatenating different pooling window sizes
in the final convolutional layer within a spatial pyramid framework. Additionally, this allows
the entire input image to be passed through the convolutional layers just once with a sliding
window based approach used to pass the feature vector through the fully connected layers for
final classification at multiple locations, scales and aspect ratios. Similarly,|Girshick|[2015] later
proposed a method which also carries out the convolution over the entire image and combines

the regions produced by a detection proposal method to perform the final classification.

2.2.3 Background Modelling

For moving object detection, motion segmentation techniques can also be applied to identify
moving objects without restriction of a specific semantic class or prior knowledge of their
visual appearance. Contrary to recognising previously modelled objects of interest, (Grimson
et al.|[1998]] showed that detection can be achieved by first modelling the background scene and
then identifying regions in the image which do not fit this model. As this approach focuses on
modelling the background, the variations in the object appearance from changing view point,
occlusion or deformation become irrelevant as any object which contravenes with the back-
ground model will be detected. Their approach works by continuously comparing the current
frame to a model of the background so that regions where there is a significant difference are
highlighted as foreground. This straight forward approach is generally described as background

subtraction.

The majority of the literature [Grimson et al., 1998} |[Heikkila; et al., 2004, Heikkila and

Pietikdinen, 2006, Piccardi, 2004, Singh et al., 2009] on background subtraction is concerned
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with detecting novel foreground objects from a stationary video camera as surveillance appli-
cations has previously been the key driver for research in this area. In such applications this is
a mature technology with hundreds of techniques proposed [Bouwmans, [2011], yet exclusively
for a static camera. While some methods [Borges, 2013} [Elgammal et al., 2002, Reddy et al.,
2013, Zivkovic and van der Heijden, 2006] can handle gentle dynamic situations such as waving
trees or slight oscillation of the camera due to wind, they are not suited for the level of dynamic

scenes experienced from a camera mounted to a mobile platform.

Techniques designed to handle camera motion generally entails the computation of optical
flow followed by either ego-motion estimation or motion clustering on the distribution of the

extracted flow vectors. Ego-motion is the estimation of the camera’s relative motion to the

rigid static environment and has long been used in [Structure from Motion (SfM)| The effects of

camera motion can be observed using the optical flow and estimated using geometric constraints
such as the epipolar or trifocal constraint [Kim et al., [2012]. As the optical flow generated by
independently moving objects do not fit the general scene motion an outlier robust estimator
such as [Fischler and Bolles, [1981] or [Rousseeuw), [1984] are generally
employed to estimate the camera motion model [Kitt et al., 2010]]. |Guizilini and Ramos [2013]]
use the output of a[RANSAC]|based approach [Hartley, [1997] to select candidate points for the
online learning of a non-parametric model based on Gaussian process classification to better
identify static and dynamic parts of the scene. Similarly, Sheikh et al.| [2009] proposed to
model the trajectory basis of salient background points which are identified using
before learning a pixel-wise segmentation within a[Markov Random Field (MRF)| framework.

However this method is both computationally slow and also requires up to 30 frames for

estimating the trajectory basis.

Beyond the background/foreground segmentation problem few works have employed clus-
tering techniques to segregate multiple foreground objects in the scene. MacLean et al.|[1994]
describe the scene motion as a (GMM)] using motion features and utilise the algorithm to
estimate the mixture portions of data samples. However, they assume the number of moving
objects is known. |Lenz et al.|[201 1] detect any number of objects by connecting sparse interest
points using Delaunay Triangulation and then cluster the points by removing edges with dis-

similar stereo and motion features.
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Table 2.1: Detection response confusion matrix.

Actual object | No object
Detection TP FP
No Detection FN N

2.2.4 Detection Evaluation Metrics

In a binary decision problem (i.e. the target object is presented or not), a classifier assigned
either a positive or negative label to each presented data sample. When considering the perfor-
mance of such a system, two types of errors are possible. Type I error or false positive (FP)
occurs when a detection does not correspond to any actual object, while a Type II error or
a false negative (FN) is the failure to detect the true presence of the target object. Table
illustrates the potential combinations of the system responses and the ground truth presence of

an object.

A dataset with known true labels are used to evaluate the performance of a detection system
or classifier algorithm. The true labels are generally acquired through manual hand labelling
each sample by a human expert in the field. The predicted response from the classifier for
all samples in the evaluation set are compared to the true labels. Given the confusion matrix
in Table the true positive rate (TPR) and false positive rate (FPR) metrics are defined as

follows:

|TP| |TP|
|Total Actual Positives| — |TP|+ |FN|’
FPR |FP| B |FP|

- |Total Actual Negatives| — |FP|+|TN|

The TPR measures the fraction of correctly classified positive samples (from total actual
positives), while the FPR measures the fraction of negative samples that are misclassified as
positive (from total actual negatives). Therefore, a perfect classifier should have 100% TPR
and 0% FPR. Note that these metrics work in conjunction rather than isolation as it is trivial
to score perfectly on either individually at the cost of the other. For example if a classifier
was to always return a positive response then all the actual positive samples could be correctly
identified resulting in TPR = 100%, while all actual negative samples are misclassified as

positive resulting in F'PR = 100%. Similarly both metrics would be 0% if the classifier always
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returned negative.

The performance of a given classifier in terms of TPR and FPR is generally illustratively

expressed using the [Receiver Operator Characteristic (ROC)| space. This space is defined as

xy-axis plot with FPR on the x-axis and TPR on the y-axis. If a classifier outputs a continuous
score (i.e. probability) then this value can be thresholded at various levels to generate a curve in
the ROC space. This enables the reduction of the two metrics into a single performance score
by setting a desired TPR or FPR and measuring the performance on the other metric. Fixing the
TPR or FPR is generally application specific, for example if an obstacle detector formed part
of a driver assistance system then a low FPR is desirable, while if used as the primary sensor in
an autonomous system then high TPR is desired. Alternatively, the overall performance can be

evaluated by considering the total area under the ROC curve.

A common alternative for quantitatively evaluating the performance of a binary detector
classifier is to use the precision and recall metrics. In this metric space it is desirable to

maximise both metrics as precision and recall are defined as follows:

o TP
recision = ——————— s
|TP|+ |FP|
TP
Recall = — =11
= ITP L |FN]

Here recall is the same as TPR, while precision is the fraction of positives correctly classified
out of the total number of predictions made. Precision and recall are generally favoured over
ROC metrics when evaluated on a highly skewed dataset. A detailed view of the relationship
between these two methods are provided by Davis and Goadrich [2006]. F-measure or F-score
is used to measure the overall performance of a classifier by evaluating the harmonic mean of

precision and recall as:

precision - recall

Fs = (1 2y .
p=(1+5) (B2 - precision) + recall ’

where [ is a weight used to emphasise either precision (8 > 1) or recall (3 < 1). Typically
the F'1 score is used to evaluate a detection system where equal importance is given to both
precision and recall. If the detection method is capable of estimating the likelihood or a

confidence score for each detection, the precision and recall can be used to generate a curve
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by adjusting the detection threshold which can also be used to find the appropriate balance

between precision and recall. Moreover, in the multiple class setting, [Mean Average Precision|

is often used to aggregate the score by computing the mean area under the precision-
recall curve for each class. Finally, in the case of high recall, the log-average miss rate has

become popular [Dollar et al., 2009a,b].

2.3 Visual Object Tracking

Tracking is an important topic in computer vision and it has been studied for several decades.
Despite the extensive research in this area, issues arising from varying illumination, changing
view point, partial occlusion and object deformation along with complex object and camera
motion rankle the field. Several publications survey the significant and recent contributions to
this art [Jalal, 2012} L1 et al., 2013, Wu et al., 2013, Yang et al., 2011} Y1lmaz et al., 2006]. This
section describes the key concepts behind the most notable (in addressing the aforementioned
challenges) contributions from the single target visual tracking literature before exploring the

multi-target extensions.

2.3.1 Single Object Tracking

A visual tracker is typically initialised with an observation of the object of interest in a single
frame and the tracker is responsible for maintaining knowledge of the location and extent of the
object in subsequent frames. The initial observation is generally represented as a bounding box
containing the object of interest selected either by a user or one of the automatic detection meth-
ods presented in Section The main functional blocks for constructing a visual tracker are:
motion estimators, object and context description models, decision mechanism (i.e. classifier)

and more recently a model adaptation strategy (i.e. online learning).

Recent surveys of the most notable techniques in visual tracking were published in [Wu
et al., 2013} Yang and Wang, |2011]] with [Salti et al., 2012]] showing performance comparisons
under different conditions. While the majority of the methods in these surveys are for single
target tracking they offer valuable insights into effectively updating object appearance models
online. Furthermore, state-of-art visual trackers are designed with the following considerations

[Yang et al., 2011]:
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Robustness to clutter, occlusion, changes in illumination and complex motion.
Adaptive to change in both context and object appearance.
Computational Efficiency enabling real-time processing of live video streams.

These considerations are addressed in the choice of the algorithms used in the main functional

blocks of a visual tracker.

Bradski| [[1998]] proposed an adapted version of the mean-shift [Fukunaga and Hostetler,
1975] algorithm by encoding the hue value of a target object as a histogram which is con-
tinuously updated with each frame. More recently, |He et al.| [2013] propose a novel locality
sensitive histogram where floating point values is added to multiple spatially local bins which
exponentially decays based on distance to pixel location. This alteration has shown significant

improvement in visual tracking.

Increasingly, machine learning is being employed to incrementally train an appearance
based detector to capture the evolving appearance of the specific object instance over time.
[Kalal et al., 2012] explicitly use the predicted trajectory to identify miss detections and simi-
larly spatial structure is used to identify false positives. Any identified errors in the detector out-
put are used to correct the detector through online learning. Methods based on low dimensional
subspaces [Ross et al., 2007] or structured [Hare et al., [2011]] have also been used to
incrementally update appearance models for the tracked object online. While these approaches
have the desired property of learning online to improve tracking over time, the constraints used
to identify false detection in [Kalal et al.,[2012] and the structured output of [Hare et al., 2011]]
do not extend to multiple objects. Over the past few years a number of tracking challenges
[Kristan et al.l 2013 2014, 2015, 2016] were established to better quantify and accelerating
progress in visual tracking. However these challenges focus only on the case of single object

tracking for any arbitrary class, while this thesis is aimed more towards multiple object tracking.

2.3.2 Multiple Object Tracking

This section summarises studies directly related to the work presented in this thesis; particularly
vision based multiple object tracking or[MOT] One of the most difficult components of is
in combining frame-by-frame detections to estimate the most likely trajectories of an unknown

number of targets, including their entrances and departures to and from the scene [Berclaz
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et al., 2011, Maggio and Cavallaro, 2009]. Classical approaches for target tracking typically
combine a data association framework with an optimal state estimator to evaluate the trajectories
of different objects and predict their state ahead of time. Alternative methods generally use
sophisticated learning algorithms for tracking-by-detection utilising rich visual representations

of the objects to solve the data association problem [Jalal, |[2012].

Data Association

Multi-object tracking can be achieved by detecting objects in individual frames and then linking
detections across frames. Such an approach can be made very robust to the occasional detection
failure: If an object is not detected in a frame but is in previous and following ones, a correct
trajectory will nevertheless be produced. By contrast, a false-positive detection in a few frames
should be ignored. However, when dealing with a multiple target problem, the data association
step results in a difficult optimisation problem in the space of all possible families of trajectories.
Greedy search or sampling based methods outlined in this section address this problem finding

a solution to the global optimum.

When multiple targets are to be tracked, assigning the appropriate measurement to the

corresponding object trajectory can become a challenging task known as data association.

Traditionally this has been solved using Multiple Hypothesis Tracking (MHT)| [Cox and Hin-

gorani, (1996, Reid, [1979] or the [Joint Probabilistic Data Association Filters (JPDAF)| [Bar-

Shalom, (1987, Schulz et al., 2003]], which both delay making hard decisions while objects are
in close proximity. In their pure form, the combinatorial complexity of these approaches is
exponential in the number of tracked objects making them infeasible for real-time applications
in highly dynamic environments with many targets. However, by incorporating appearance
based heuristics in the assignment cost [Kim et al., 2015] and appropriate approximations to
the optimisation problem [Rezatofighi et al., 2015], it was recently shown that both and

JPDAH remain competitive with only a fraction of the previous computational requirements.

When considering only one-to-one correspondences modelled as bipartite graph matching,

globally optimal solutions such as the Hungarian algorithm [Kuhn, [1955] can be used [Huang

et al., 2008, Perera et al., 2006]. Approximate methods such as [Markov Chain Monte Carlo|

[Data Association (MCMCDA) have showed promising results in tracking a varying number of

objects [Oh et al., 2004} Yu et al., 2007] while tolerating miss detections and false positives. (Ge
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and Collins| [2008]] propose a hierarchical Bayesian model to infer both the optimal parameters
and tracklet partitions from unlabelled data within the framework. Recently, Zamir
et al. [2012] incorporate the whole temporal span to solve the data association problem for one
object at a time by modelling the inter-frame associations of a single object as a generalized

minimum clique graph.

Motion Prediction Estimation

When assigning detections to existing tracked objects within a [Dynamic Bayesian Network|

(DBN)| framework (detailed in Appendix [A)), it is beneficial to consider the predicted state of

individual targets using a recursive Bayesian estimator. Possibly the most well known estimator
is the Kalman Filter [Kalman, 1960]], which estimates the true state of a linear system from
a series of observations which contain Gaussian noise and a known motion model. Both the
Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) [Julier and Uhlmann,
2004] variants can be applied to non-linear motion and measurement models by linearising
around the current estimate or sampling around the expected mean to estimate the true mean
and covariance. These methods rely on a Markov assumption and carry the associated danger of
drifting away from the correct target. Particle filters [Gordon et al., 1993 Isard and Blake, 1998|
can handle non-Gaussian noise by using a set of ‘particles’ to simulate random perturbations of
a state governed by the motion model. These predictive filters are generally applied to estimate
the state of each individual object independently. However, as the particle filter has the ability to
deal with multi-modal distributions, multiple objects as well as multiple hypotheses can easily

be tracked simultaneously [Khan et al., 2005, Koller-Meier and Ade, 2001]].

Ding et al| [2008] showed that it is possible to use dynamics to compare tracks and dis-
ambiguate between targets without assuming a motion model a priori. Recently, |Dicle et al.
[2013]] model the underlying dynamics of each moving objects with linear auto-regressors and
formulate a generalised linear assignment framework that merges detections with the least
combined motion complexity. These predicted proximity and motion affinity measures are

considered complementary to appearance similarity based approaches to data association.
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2.3.3 Alternative Visual Tracking

Due to the recent improvement of object detection algorithms many visual trackers adopt a
tracking-by-detection paradigm. |Aeschliman et al. [2010] showed that segmentation plays
a critical role in robustness and performance of tracking, particularly for tracking multiple
overlapping targets. Similarly, (Chen and Corso [2010] combine both appearance and optical

flow for propagating labels between frames in a video sequence.

Wu and Nevatia [2007] directly associate detections using information from combining
part based detectors and resorting to a mean-shift tracker when no data association is found.
Zhang and van der Maaten| [2013] incorporate spatial constraints to preserve the scene structure
between frame via a pictorial-structures framework. Felzenszwalb et al.|[2010], jointly training
individual object classifiers and updating the structural constants with online SVM learning.
Part-based approaches are prone to over-fitting due to the flexibility of the model. Yao et al.
[2013]] address this problem using a two stage training framework comprised of part tracking

step followed by the estimation of object and part correlation parameters.

The problem of multi-target tracking can also be decomposed as both a discrete and con-
tinuous optimisation problem Andriyenko et al. [2012]], Milan et al. [2013]. Assigning detec-
tions to either new/existing tracklets or identify as false alarm is intrinsically in the discrete
domain while optimal estimation of the target states (such as position, size, and velocity) is
inherently a continuous state space estimation problem. |Andriyenko et al.| [2012] alternate
between fitting piecewise polynomial trajectory models to target hypotheses and updating the

data association taking into account global trajectory and label costs. |Milan et al. [2013]

introduce a mixed discrete-continuous [Conditional Random Fields (CRF)| representation to

simultaneously evaluate the data association and trajectory estimate while also imposing two
physical constraints. The first ensures that two continuous trajectories should not overlap in
both space and time. The second is a mutual exclusion constraint which generally defines that
only a single detection should be associated with a single track hypothesis. Together, these

constraints result in plausible trajectories.

2.3.4 Tracking Evaluation Metrics

Bernardin and Stiefelhagen [2008] formulate a pair of metrics measuring the performance of
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multiple object trackers that focuses on the precision in object location estimation, accuracy in

recognising object configuration and consistency in propagating object labels over time. The

[Multiple Object Tracking Accuracy (MOTA)| combines all false positives, false negatives, and

label switch errors into a single number, while [Multiple Object Tracking Precision (MOTP)|

measures the average displacement between the ground truth position and the tracker output.
As these metrics combine the multiple label association errors into a single number, with a
separate number for position precision they are widely used for evaluating the performance of

multi-target tracking systems [Jalal, 2012, Milan et al., 2013].

The main metric used to compare trackers would have to be the MOTA|metric as it combines

three common sources of error in one measure. The is computed as:

FN, + FP, + IDSuwy,)
2., G

where t is the frame index, F'/N; and F'P, are detection errors as described in 2.1| while GT; is

moTA =1 2

2.1)

the total number of ground truth object in frame ¢. The I DSw; is any error in switching the
identity of a target object in frame ¢. Note the MOTA|is commonly represented as a percentage
(—inf, 100], which can also be negative in the cases where the number of errors exceed the

number of ground truth objects.

The score defines a detection with a 50% overlap criterion which does not capture
the localisation precision of the tracker. For a more detailed measure of how well a tracker

locates each target the MOTP)|is used:

Zt,i dt,i
> G

where d; ; is the bounding box overlap with the assigned true object 7 and ¢; is the number of

MOTP =

(2.2)

matched objects in frame .

Another set of common tracking metrics that capture track consistency are the

Tracked (MT)| and Mostly Lost (not tracked) (ML)| quality measures [Li et al., 2009, Wu and

Nevatia, 2006]. The measures the portion of true objects that are tracked for at least 80%

of their lifespan. While the denotes the portion of true objects that are recovered for less
than 20% of their lifespan. It is desirable for a tracker to have high[MT|and low
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2.4 Summary and Implications

Detection and tracking are two well studied research topics and both are increasingly making
use of model representations based on machine learning. However, the majority of methods
employ supervised classifiers as the appearance model which are typically trained in a batch
process. Beyond requiring significant amounts of training data, prior investigations showed
that learning models in this way is biased to the original source of the data (Section [2.2.2).
This motivates the main focus of this thesis which is the need to gather samples for adapting

appearance models during deployment.

The following observations and gaps identified in the literature provide an opportunity to
resolve the first research question: “How to discover objects which may have appearance

characteristics unknown by the detector? ”

e Motion based detection methods discussed in Section use a static camera to model
the background and segment moving foreground objects. This appearance model-free
approach does not require pretraining and is able to identify previously unseen moving
objects. However these approaches rely on various forms of background subtraction
making them unsuitable for cameras with significant ego-motion as experienced on a
vehicle.

e The recent method of (Guizilini and Ramos| [2013]] used epipolar constraints to account
for camera ego-motion and directly train a classifier to learn the appearance of dynamic
vs static parts of the scene. While this approach was able to learn during deployment, it

was limited to binary classification as opposed to segmenting individual objects.

From the literature, the following observations can be made towards addressing the second
research question: “How to adapt an appearance based detector for deployment in new and

novel environments with different background characteristics to the training data? ”

o A useful characteristic of the background subtraction methods is that they would adapt to
the deployed environment making them robust to distracting novel background patterns.
However, these techniques are sensitive to camera motion preventing them from mod-
elling background appearances beyond a single static scene. To overcome this problem
we seek an appearance representation which is not anchored to a specific location in the

image.
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e Detection proposals are aimed towards selecting likely object candidates to focus atten-
tion for object recognition. Some of these techniques were found to consistently identify
candidate regions [Hosang et al.,[2014] in a class agnostic manor. As these methods shift
the attention to be centred onto regions with general appearances of an object, it should
be possible to learn a general appearance model for background distractors while also
improving efficiency over a sliding window approach.

e Supervised discriminative methods such as deep convolutional networks reviewed in Sec-
tion[2.1.3|provide a flexible framework that can be retrained for different recognition tasks
if an annotated dataset is available. Additionally, their intermediate features are shown
to encode multiple cues such as colour, texture and shape that could prove beneficial to

modelling the background.

The following observations and gaps identified in the tracking literature provide an oppor-
tunity to resolve the third research question: “How to adapt the assignment cost using data

collected at deployment?”

e Online learning has been used for single object tracking (reviewed in Section[2.3.T)) where
a detector is trained to identify a single instance of an object [Kalal et al., 2012]. However,
the constraints used to gather training samples during deployment assume only a single
object of interest exists in the image making it non-trivial to extend to problems.

e Geometric constraints applied to self-supervised scene segmentation in Section[2.1.3|pro-
vide a level of robustness to model drift. While many of these constraints rely on specific
knowledge of the scene structure, some of the constraints used in visual object tracking
(e.g. mutual exclusion Milan et al.| [2013]] in Section [2.3.2)) are generally applicable and
could be used as a source of self-supervision to adapt an appearance based tracker at

deployment.

The following chapters address these gaps identified in the literature review. In particular,
Chapter |3| addresses the first research question by exploring a combination of motion based
detection with online learning to continuously discover new objects and update a classifier
during deployment. Later in Chapter {4 recent developments in [DCNF are used to address
the second research question by extracting features for background modelling within
both unsupervised and semi-supervised frameworks. Finally, Chapter [5takes the intuition that

constraints can be used to guide self-supervised techniques and is applied to object tracking for
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addressing the third research question. Together, these methods utilise unsupervised and self-

supervised techniques to facilitate the adaptation of detection and tracking during deployment.
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Chapter 3

Discovering Unknown Moving Objects

The literature review in the previous chapter identified motion based techniques as a class
independent tool for detecting moving objects. The first published paper in this thesis [Bewley
et al., 2014 takes inspiration from two of the few techniques presented in the literature that
are suited for a moving camera. Particularly, the use of epipolar constraints as a supervisory
signal for learning a classifier [Guizilini and Ramos, 2013] is explored along with motion based
clustering to separate the dynamic components into individual objects as inspired by [Lenz et al.,
2011]]. This paper combines these ideas together to learn new objects as they appear in video
frames. Additionally, the paper proposes a technique for associating motion clusters to known
object instances which is then used to improve the classifier within a self-supervised framework.
This framework enables the vision system to identify new objects with potentially unknown
visual appearance effectively addressing the first research question of: How to discover objects

which may have appearance characteristics unknown by the detector?

This chapter presents a motion based detector that identifies moving objects by analysing
the displacement of features matched to the previous frame which are clustered using[DBSCAN]|
[Ester et al., [1996]], while the classifier compares the appearance encoded in the clustered
features to stored appearance models. This complementary arrangement of motion clustering
and appearance classification, enables the detection of both known objects and unknown objects
that are currently moving in the scene. The inter-frame motion can also bootstrap tracking of
individual objects to both reduce incorrect detections and estimate the velocity of the detected
objects. By tracking object detections over multiple frames, the single frame detected motion

regions can be aggregated to eliminate false positives, identify misdetections and captures the

51
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changes in an objects appearance over time.

The proposed method was quantitatively evaluated and compared to the earlier work of
[Guizilin1 and Ramos, 2013|] by treating all objects as a single instance. The multi-instance
performance was evaluated on a range of datasets which differ in environmental context, in-
cluding video from the benchmark [Geiger et al., 2012] and a novel mining sequence. These
experiments demonstrated the systems ability to learn across multiple environments without

relying on any pretrained appearance models.
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Online Self-Supervised Multi-Instance Segmentation of Dynamic Objects

Alex Bewley!, Vitor Guizilini?, Fabio Ramos? and Ben Upcroft!

Abstract— This paper presents a method for the continuous
segmentation of dynamic objects using only a vehicle mounted
monocular camera without any prior knowledge of the object’s
appearance. Prior work in online static/dynamic segmentation
[1] is extended to identify multiple instances of dynamic objects
by introducing an unsupervised motion clustering step. These
clusters are then used to update a multi-class classifier within
a self-supervised framework.

In contrast to many fracking-by-detection based methods,
our system is able to detect dynamic objects without any
prior knowledge of their visual appearance shape or location.
Furthermore, the classifier is used to propagate labels of the
same object in previous frames, which facilitates the continuous
tracking of individual objects based on motion.

The proposed system is evaluated using recall and false alarm
metrics in addition to a new multi-instance labelled dataset to
measure the performance of segmenting multiple instances of
objects.

I. INTRODUCTION

This paper addresses the problem of detecting and seg-
menting multiple dynamic objects simultaneously from a
monocular video sequence, where the camera itself is moving
within the scene. Motion segmentation remains as one of
the fundamental computational challenges and is a critical
perceptive capability for several robotic tasks, such as colli-
sion avoidance and path planning in dynamic environments.
The approach taken in this paper uses a combination of
unsupervised motion based clustering methods to supervise a
multi-class classifier with training examples collected online.

Much research effort is being expended on object recogni-
tion based methods which use various supervised classifiers
to train a predictive model off-line with a (preferably) large
manually labelled training dataset [2], [3], focusing on the
detection of a single class of object [4], [5], [6]. The
performance of these methods is highly dependent on having
a comprehensive training dataset, which contains sufficient
number of labelled examples of objects of interest along
with negative examples. It is costly and often impractical
to obtain such a training set, where each class is known and
completely represented for different view-points and lighting
conditions. Instead, we collect training examples online in a
self-supervised framework, without any prior knowledge of
the object’s shape, location or visual appearance.

The work presented here falls within the self-supervised
classification category, however we restrict ourselves to the

LA. Bewley and B. Upcroft are with the School of Electrical Engineering
and Computer Science, Queensland University of Technology, Australia
{aj.bewley,ben.upcroft}@lqut.edu.au

2V. Guizilini and F  Ramos are with the
Information Technologies, The University of Sydney,
{vgui2872 , fabio.ramos}@sydney.edu.au

School  of
Australia

Fig. 1: Example detection of multiple dynamic objects discovered using our
proposed method that corresponds to the input image sequence shown above.
The different colours (hue) in the output image represents the multiple object
instances detected, while the intensity denotes the likelihood of the assigned
class at each pixel. These objects were detected using only the motion of
the scene and not any off-line models describing the visual appearance of
the objects.

detection of only independently moving objects in the scene.
Here we are not concerned with assigning semantic labels
such as ‘car’ or ‘human’ to image regions. Rather we assume
that any dynamic object is an obstacle and needs to be
tracked in a dynamic motion planning framework. In order to
predict where each dynamic object will likely be located in
the future, it is desirable to separate the dynamic pixels into
independent groups with similar motion. To achieve this, we
go beyond the self-supervised binary classification of [1] to
identifying multiple independent motion regions within an
image as shown in Fig. 1.

This paper addresses several challenges absent in the
binary case. Firstly the input sequence need to be first seg-
mented into multiple spatially consistent motion segments.
Each motion segment must be assigned a temporally coherent
class label before used to train a multi-class classifier. Finally
multi-class classification is inherently more difficult than
binary classification, which is further exacerbated by the non-
stationary nature of video data.

The paper is organised as follows: In the next section we
review relevant literature, followed by a brief overview of the
proposed system in section III. In section IV we describe the
static segmentation and motion clustering of sparse optical
flow. In section V we detail the online process for using the
sparse motion clusters to update a non-parametric model en-
abling temporally consistent inference over the entire image
sequence. Section VI shows some results before conclusions
and outlook to future work in section VII.



II. RELEVANT LITERATURE

Over the last decade many algorithms have been developed
to detect obstacles from a moving platform using vision [7].
These methods often combine object recognition and visual
ego-motion estimation with occupancy maps. A tracking-
by-detection framework is commonly employed utilising
advancements in visual object recognition and can further
be improved by utilising 3D tracking from stereo images
[8]. However this method only detects pedestrians as it is
trained off-line for detecting humans.

The Random Sample Consensus (RANSAC) [9] paradigm
has been extended to model multiple motions from monoc-
ular vision simultaneously [10], however it is restricted to
only fitting rigid objects. Kitt e al. use a similar two stage
approach (RANSAC with an ensemble of extremely ran-
domised decision trees) [11] however their method requires
off-line training with hand-labelled training examples of all
likely situations. Another approach is to estimate the full
structure-from-motion of the camera with a robust estimation
of the ground plane [12].

An alternative to learning appearance models of the tar-
get objects is to build statistical models the background
appearance and temporal shifts online [13], [14]. Recent
advancements in compressive sensing [15], [16] led to new
approaches for extracting dynamic objects from monocular
video sequences, however these approaches have only been
demonstrated for the case of static or nominal camera mo-
tion.

The objective of this work is to segment regions of an
image sequence corresponding to individual moving objects,
observed from a mobile camera, without using offline train-
ing or prior knowledge of the location, shape or appearance
of the target objects. To robustly model the camera mo-
tion we estimate the epipolar geometry of matched points
within a RANSAC framework mirroring the initial binary
classification step in [1]. We also take inspiration from [17]
for clustering different motion regions before modelling the
spatial location and colour of dynamic objects in addition to
the static background.

III. SYSTEM OVERVIEW

The work presented here builds on the binary dynamic
classification work by Guizilini and Ramos [1] by extending
it to segment multiple objects. An overview of the proposed
system is illustrated in Fig. 2 and can be described using the
following pipeline:

1) As in [1] sparse optical flow is computed by matching
key-points from the current and previous frames as new
images are acquired.

2) The optical flow vectors corresponding to the static
environment are identified by fitting a motion model
within a RANSAC framework to account for outliers.

3) The outliers of the previous step undergo density based
clustering to identify independent motion in the scene
and remove mismatched key-points.

4) The static and dynamic clusters are then used to in-
crementally update a multi-class non-parametric kNN

model by matching each cluster to either an existing
class or a new class.

5) This non-parametric model is then used to infer the
object instance for any pixel in the image.

IV. DYNAMIC OBJECT DISCOVERY

The online detection of dynamic objects begins with an
initial segmentation of the sparsely matched key-points from
two consecutive frames. These motion segments provide
a continuous source of training examples to update the
dynamic object classifier described in the next section with
new objects and new views of existing objects. The motion
clustering happens in two stages, firstly separating static and
dynamic points followed by clustering the dynamic points
into groups representing consistent motion.

The sparse optical flow is computed by first detecting
salient image features using both ‘SURF’ [18] and ‘Good
Features to Track’ [19]. Using a combination of feature
detectors provides reasonable coverage of the image space,
including corners, edges and textured areas. The optical flow
of these features is extracted by computing the ‘BRISK’
descriptor [20] of each point and compared to the features
detected in the previous frame. This essentially extracts
a sparse sampling of the optical flow across the image,
providing a basis for motion segmentation described in this
section.

A. Static and Dynamic Classification

The process of detecting dynamic objects begins with the
binary classification of static and non-static key-points. In
this step the global image motion is estimated to account for
optical flow generated by the camera motion itself. When the
camera is moving, the optical flow from static points in the
world are constrained by the epipolar geometry of the two
viewpoints.

We classify static points using the epipolar constraint that
describes the motion of key-points from two viewpoints
using the fundamental matrix [21]. A suitable technique
for this is the RANSAC algorithm robust to outliers from
the dynamic objects and has been demonstrated as a basis
for online classification of static and dynamic points [1].
With sufficient key-points for the static environment, the
RANSAC algorithm should elect the fundamental matrix that
best represents the camera motion. Therefore, any matched
key-point that lies on the epipolar line defined by both the
estimated fundamental matrix and the corresponding key-
point in the previous frame should belong to a static object.
Point matches that do not fit the epipolar geometry are further
processed as described in the next section.

B. Dynamic Point Clustering

So far the point correspondences have only been separated
into static and dynamic binary classes. We extend this to in-
clude multiple instances of moving objects within the image,
by grouping similar and separating dissimilar dynamic points
based on motion. This grouping task can be formulated as a
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Fig. 2: An overview of the object extraction and learning process used in this paper.

clustering problem for an unknown number of clusters with
noise introduced by mismatched key-points.

For characterising the motion of key-points, both the
image location and optical flow velocity of the non-static
features are used to represent the image motion of the
corresponding object. By only considering the non-static
features for clustering, we limit the computation required
along with providing a larger separation between points. Let
the motion feature vector w corresponding to each dynamic
key-point describing both the image position(u, v) and inter-
frame displacement (1, ©) as:

w = [u,v,u,0]".

To cluster the dynamic points we chose an algorithm
which doesn’t require the number of clusters to be known a
priori, suitable for non-rigid objects and can identify outliers
which correspond to mismatched features. For this we choose
to use the Density Based Spatial Clustering Analysis with
Noise (DBSCAN) algorithm [22]. DBSCAN is governed by
two parameters: a radius e and the minimum number of
points to form a cluster minPts which essentially defines
the minimum local density of a cluster.

The motion features for the set of dynamic points (w;,? €
DynamicSet) are used as the input to the DBSCAN al-
gorithm. Using the average key-point density in the image
we can evaluate suitable neighbourhood density parameters
(e and minPts) for grouping features corresponding to
the moving objects in the scene. The density is estimated
using the average key-point density in the 2D image and
assuming that adjacent key-points on the same object will
share similar inter-frame displacements as opposed to if they
lie on different dynamic objects. For example if two points
wp and w, on the same object have similar motion i.e.
llwp — wqll = ||(up, vp) — (ug, vg)|| and the main difference
lies in their relative image position. If p and ¢ are from
different objects or different parts of the image we expect
high separation in position and motion space respectively
thus reducing the likelihood these points would share a
common neighbourhood.

Fig. 3: Sparse optical flow vectors grouped by motion. Static points are
shown in black, while the dynamic points are coloured by their cluster
assignment. Points with low density in motion space (considered noise) are
marked in white.

Using the average matched key-point density (n/(width x
height)) of the current frame we can automatically set the
€ radius to be:

5 minPts - width - height
€ ; ey
nm
where 7 is the number of matched key-points including static
and dynamic in the frame. The min Pts parameter is explicit
set to the minimum number of points we expect in a cluster.
We found that setting minPts to 10 is a good compromise
between the number of false clusters and missing clusters.

Points with fewer than minPts in their ¢ neighbourhood
are considered as noise within the DBSCAN framework,
unless on the boundary of a dense cluster. This attribute of
DBSCAN essentially eliminates non-static points caused by
mismatches in optical flow as observed in Fig. 3.

V. DYNAMIC KNN CLASSIFICATION

While the motion clustering method described in the
previous section can identify both individual dynamic objects
in the current frame and previously unseen objects, it has
limited use for object tracking as it does not maintain any
memory of which objects were previously identified. Here we
introduce a self-supervised classifier for associating currently
detected clusters with previously found objects. Knowledge
of previous objects can be maintained for short durations if
temporally occluded or when an object is missed due to the



number of matched key-points dropping below the minPts
threshold required by DBSCAN.

The k-nearest neighbour (KNN) classifier provides a suit-
able mechanism for this task, as it’s capable of representing
complex decision boundaries and naturally supports multi-
class classification problems, while being simple to imple-
ment [23]. As the name suggests, the k nearest neighbour
algorithm assigns a class label to an unlabelled test point by
considering the distance to and frequency of labels amongst
the k& nearest neighbours in the model. This enables the kNN
classifier to represent complex and non-Gaussian decision
boundaries defined by the representative data. For finding
the k£ nearest neighbours, we use the randomised kd-trees
method described in [24] to achieve efficient search time
with precision guaranteed in Euclidean space.

The kNN classifier is trained with a set of input feature
vectors z; that describe the image location and colour of the
each key-point along with the assigned cluster number k;.
The input feature vector x is defined as:

x = [u,v,S - cos(H),S - sin(H), V],

where H,S,V are the hue, saturation and intensity value
(HSV) of the pixel located at (u,v) in the image. The
HSV colour space is chosen over the RGB colour to limit
sensitivity of lighting to a single channel.

For clarity, in this section we refer to clusters as the output
of the unsupervised approach for the current frame and class
labels as the temporally consistent moving object identifier
stored in the kNN classifier. Also note that k¥ = 0 represents
the static cluster from RANSAC while £ = 1...K is a unique
identifier for the individual dynamic clusters found using
DBSCAN for the current frame.

This classifier is initialised with the initial clusters found
in the first pair of frames and then incrementally updated
there after. Clusters found in subsequent frames are used to
continuously update the kNN non-parametric model allowing
it to adapt to the changing dynamics of the scene using
a continuous supply of training examples. However, the
cluster numbers of the dynamic objects are arbitrary in the
unsupervised framework and need to be matched to the class
numbers representing previously discovered objects.

In the remainder of this section, we detail the inference
method used for predicting new class labels, address the
issues of cluster to class association and manage the growth
of the model through selective updating and structured for-
getting of uninformative points.

A. Inference

A drawback of the standard majority voting classification
in this application arises due to the static class being excep-
tionally more frequent than any dynamic class and essentially
dominates the feature space near the decision boundaries. To
help alleviate this problem we use a probabilistic soft-max
weighting function to evaluate the conditional probability of
assigning the label c to test point x as follows:

p(clz, N¥(z)) = argmaz. (
2

where N*(z) are the kNN points from z in the non-
parametric model. This essentially weights the votes from
each neighbour by their proximity to the test point.

B. Cluster Association

As subsequent frames provide new key-point examples
of dynamic objects, these clusters need to be associated
to previously seen objects or assigned to a new object.
Evaluating the appropriate and temporally consistent class
label for a given cluster is critical for the classifier to
continuously build on its knowledge of a specific object.
Here the classifier itself is used to predict the class labels of
the new training clusters and resolve inconsistencies through
information filtering.

Cluster association is achieved through an initial step
of inferring the class label of each supplied training point
and comparing its overlap ratio of class labels and cluster
numbers. This is equivalent to assigning each cluster to the
class with the highest Jaccard similarity coefficient [25].
Given all key-points of cluster K and the set of key-points
classified with label C' (denoting an existing object in the
non-parametric model), the Jaccard coefficient is computed
as:

_|KnC]
- |KucCl

The clustering result of the current frame is compared to
the output of the dynamic ANN classifier to evaluate new
objects and update existing objects. Given the cluster labels
and predicted class assignments for each key-point provided
in the current frame’s training set, we take a greedy approach
by remapping the entire cluster to the class number with the
highest Jaccard coefficient; a point p.; jointly assigned to
class ¢ and cluster k is reassigned to the c* that has the
highest Jaccard coefficient voted by all point in the same
cluster.

The discrepancies between the predicted class labels and
the consensus/remapped class labels can be further used
to identify anomalies in the temporal consistency of the
unsupervised clustering and identify clusters representing
new/unseen objects. For example, in the top row of Fig.
4, a non-static cluster found corresponding to the entering
car on the left, doesn’t match any existing dynamic labels
signifying the need for a new class label (represented as red
in the output image). If this cluster was a false positive, it is
expected that the cluster is not temporally coherent and that
current and future static points located in the same region
of the input space will rectify this scenario in the forgetting
step.

J(K,C) 3)

C. Updating

Using the assigned labels from the cluster association,
kNN learning is as simple as adding an example point to the



Fig. 4: Examples of temporal coherent label output of the proposed method. Top row shows the immediate detection of a car as it enters the scene denoted
by the red cluster introduced in the middle frame. The bottom row demonstrates correct label assignments are maintained over multiple frames, even during

temporary occlusion of the pedestrian on the right of the image.

non-parametric model. To minimise the unbounded growth
rate of the model, new points are filtered before being added
to the model. New points are only inserted if the inferred
class at the feature location differs from the reassigned
cluster label or if the local density of the input point is low.

Additionally, as the state of dynamic objects naturally
change over time, it is desirable to reflect this behaviour in
the classification process. This has many advantages over a
stationary kNN classifier, particularly in regions of occlusion
and dis-occlusion (see bottom row of Fig. 4). As we are
already computing the sparse optical flow for our learning
examples we can re-use this computation to set the temporal
state of each individual training sample.

The ENN is updated by evaluating x;_; at each key-point
location in the previous image and x; in the current image
using the optical flow correspondence. The temporal partial
derivative of each point is approximated as:

5.L'/(5t =Tt — Tt—-1-

After new examples are added to the kNN database the entire
non-parametric model is updated using the partial derivatives:

Ti4+1 = Tt + (5I/5t

This keeps the learnt input values relevant as points move
though the image and gradually change colour as lighting
conditions change. At this point, we rebuild the kd-tree
structure for efficient kNN inference on the updated point
set.

D. Forgetting

As more points are added to the non-parametric model in
the learning phase the speed of inference degrades. As the
scene evolves over time many points added to the model
become irrelevant and overcrowded by points with mixed
labels. This has a detrimental effect on the speed of inference

as the size of the model continues to grow. Unlimited growth
is restricted in a number of ways:

1) Firstly, we actively search for irrelevant data points
by performing inference on each point in the model
and removing points classified with a different class to
their assigned labels. This is a common outlier detection
method used for kNN and is analogous to the Gaussian
Process feature filtering component of [1].

2) Secondly, as we propagate points in our model, points
with non-zero velocity eventually exit the input volume
bounded by the image dimensions. This input boundary
is evaluated and expanded by checking the minimum
and maximum values of each input dimension. Any
point in the model propagated outside the boundary by
a user selected margin is considered irrelevant and is
discarded. The default value of this margin is set to the
maximum average velocity defined by the optical flow
evaluated in a similar fashion to the boundary itself.

3) Finally, as misclassified points are removed in the first
step there is the potential the area would be over
represented by points with uniform labels. These points
are removed by limiting the maximum density within
the non-parametric model with uniform class labels.

VI. EXPERIMENTAL RESULTS

To evaluate the proposed method we first consider its
performance in segmenting dynamic from static objects and
compare to other online learning methods. Then we measure
the performance of continuously segmenting dynamic objects
on a multi-instance basis using a hand annotated sequence
taken from the KITTI dataset [3].

A. Online static vs dynamic classification

For comparison to other static/dynamic binary classifi-
cation methods we use the receiver operator characteristic



Fig. 5: Detected dynamic objects from the Sydney dataset. In this frame the
truck and car on the opposite side of the intersection are considered as a
single object as they share similar motion. The red object is a false positive
due to the lack of texture on the road. It is expected that this system would
be combined with a ground plane estimator to remove these false positives
and shadows if deployed specifically for road applications.

(ROC) curve, generated by varying the discriminative prob-
ability threshold on 1 — p(static|z) (of equation 2). A larger
area under this curve indicates a better overall performance
in all threshold levels. This provides a graphical illustration
of the true positive rate vs. the false positive rate. To evaluate
the ROC curve performance for the proposed system we
use the same ground truth dataset of [1], consisting of 100
frames taken from various sections of a 1500 frame dataset
taken from a moving vehicle around the city of Sydney. This
dataset contains a significant variance in lighting conditions,
as the camera moves in and out of building shadows creating
high contrast in the visual appearance of dynamic objects
(see Fig. 5). With the exception of [1], Fig. 6 shows
that our proposed method outperforms several other online
techniques including an optical flow based classification
of [26]. However, it should be noted that all these other
methods are binary classifiers and their one-vs-all multi-class
equivalent would generally require a single instance classifier
for each cluster found as opposed to the kNN classifier which
naturally handles multi-class data.

Fig. 7 shows how the accuracy varies in terms of area
under the ROC curve for different values of k. The im-
provement shown by increasing k£ can be contributed to the
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Fig. 6: Receiver Operator Characteristic (ROC) curves over 100 frames
from the Sydney dataset and comparison to other online dynamic object
segmentation algorithms including: an optical flow based classification of
[26], Incremental SVM [27] and the Gaussian Process methods from [1].
Our method outperforms all other techniques except for [1]. However, it
must be noted that all these methods are binary classifiers whereas ours
includes multiple instances. The effectiveness of multi-instance classification
is evaluated in the following experiments.

smoothing effect of sampling more neighbours, which is
beneficial in texture-less areas with a high false positive rate.
This gain is ultimately limited as k becomes significantly
larger than the number of samples on small and distant object
leading to miss detections.

B. Online motion clustering

Since the Sydney dataset was originally produced for static
/ dynamic classification, it only contains binary labels in the
form of an image mask. This paper is mostly concerned with
not only detecting a moving object, but also discriminating
between each dynamic object. Due to the complexity of
labelling for multiple instances of dynamic objects, existing
hand labelled dataset with pixel-wise semantic labels are
not suited to evaluate the effectiveness of our algorithm.
We address this by hand labelling the bike image sequence
from [3] with pixel-wise annotations of the individual objects
and use the V-measure proposed in [28] as a guide of
how well the system can segment these objects. The V-
measure is chosen as it combines two desirable aspects of
clustering, homogeneity (each cluster contains only members
of a single class) and completeness (all members of the same
class are contained in a single cluster), without explicitly
assigning semantic labels to each cluster. Our online motion
clustering system attains a V-measure of 0.24 comprised of
a completeness score of 0.31 and homogeneity score of 0.19
as defined in [28].

Since the system doesn’t go as far as assigning seman-
tically meaningful labels to each cluster, we evaluate the
system’s performance in handling multiple instances by
visualising the cluster purity and completeness in Fig. 8.
This plot shows the true object composition spread across the
static cluster (left most column) and the ten largest dynamic
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Fig. 7: Comparing performance (dotted dashed blue) along with the update
(solid green) and inference (dashed green) computation times for different
number of k neighbours on the Sydney dataset. The performance is
measured by the area under the ROC curve such that larger values indicate
a better overall performance in terms of true positive and false positive rates
for all threshold levels. This experiment shows that increasing k improved
the overall performance up to k& = 30, however, this improvement is at the
cost of longer computation times.

clusters (in terms of the number of pixels). The colours in
each bar represents the true object instance label with the
hight of each interval denoting the ratio of overlap between
that true class and the object cluster. The bar magnitudes
have been normalised to aid visibility of object instances
which are only present in a few frames, such as the car and
pedestrians.

This plot can be interpreted as: the first pedestrian was
not detected, the other true classes are generally contained
within a single object cluster. The van and bike classes have a
significant portion of the static background within this cluster
as the white van shares similar colour to the nearby saturated
road surface and for the bike a few key-points around the
wheels tend to have the same colour as the road making
the colour spread to the texture-less road where there are
few true static key-points to correct this. After the system
has had time to sufficiently sample the static background
the introduction of new dynamic objects such as the car
(see top row of Fig. 4) and second pedestrian tend to be
more homogeneous. This is largely due to colour change in
the localised region input space near the new object tends
to be under represented by the static class. We have also
run this system on different image sequences to consider it’s
generality and in environment where there is good contrast
between the colour and the environment we observe that the
system can accurately segment different dynamic objects (see
Fig. 9).

C. Computational cost

A prototype of this algorithm was implemented in C++,
making extensive use of the OpenCV 2.4 library, and was
deployed on an Intel i7 machine with §GB RAM. The total
time from image acquisition to training and then inferring the

B Static M Ped1 0 Ped2 [0 Bike M Car M Van

Normalised Class Composition

0 2 4 6 8 10
Object Cluster

Fig. 8: Visual representation of the class/cluster composition over the KITTI
Bike Sequence with individually pixel-wise annotated objects. The columns
represent the clusters found by the algorithm with cluster O the static cluster
and the colours represent the ratio of true class labels for pixels of that
cluster.

Fig. 9: Moving segments of mining dataset. This shows all moving parts
of the scene has been accurately detected. The truck undergoing loading is
stationary.

presence of dynamic objects across the entire image takes
3.5 seconds, with the breakdown times shown in Table I.
This was evaluated by taking the average frame processing
time for a typical image sequence from the Sydney [1] and
KITTTI [3] datasets, with resolution shown in pixels and time
in seconds. The two main components which consume the
majority of the time are the key-point matching and the kNN
training. There are many alternative point trackers which can
supply sufficient number of key-points correspondences that
when implemented on parallel hardware is capable of real-
time performance (e.g. [29]). Furthermore, other forms of
efficient indexing, such as Locality Sensitivity Hashing [30],
could potentially be a faster choice for nearest neighbour
searching in various components of this application, requir-
ing further investigation.



Dataset Sydney (640 x 480) | KITTI (1242 x 375)
Point Matching 0.35 0.98
RANSAC Fitting 0.09 0.19
Motion Clustering 0.02 0.02
kNN Training 0.63 2.01
Dense kNN Inference 0.11 0.31
Total 1.20 3.51

TABLE I: Average execution times by section (seconds per frame) with
k = 30.

VII. CONCLUSION

In this paper we have proposed a method for com-
bining unsupervised motion clustering in a self-supervised
framework, for the purpose of segmenting multiple dynamic
objects from a monocular image sequence. Furthermore, the
segments from each frame are made temporally coherent
through the continuous inference, remap and update learning
cycle. We have evaluated this approach quantitatively using
the original 100 frame dataset of [1], in addition to qualita-
tively evaluating the multi-class performance on a range of
datasets which differ in context. While the binary dynamic
segmentation of [1] has better detection performance, we
believe this to be an important step towards multiple object
tracking and ultimately instance based object characterisation
in an unsupervised framework.

In future work, we plan to optimise the individual system
components further with respect to run-time and perfor-
mance. Additionally, the ability to segment whole objects
in an unsupervised framework opens many opportunities in
object tracking and visual appearance learning.
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CHAPTER 3. DISCOVERING UNKNOWN MOVING OBJECTS




Chapter 4

Background Modelling for Adapting to the

Deployed Environment

This chapter continues the theme that a pretrained object detector may perform poorly in en-
vironments which are visually dissimilar to the training data. In contrast to learning new
objects by their motion as performed in the previous chapter, this chapter presents a method

for detecting objects based on their appearance dissimilarity to the background. This is demon-

strated by applying the state-of-the-art appearance based [Region Convolutional Neural Network
(RCNN)| detector of [[Girshick et al., 2014]] in a surface mining environment. As this environ-

ment contains substantially different visual characteristics to the typical internet based images
(for example see Figure [4.1) used in training the detector, a high rate of errors are

encountered.

This chapter presents a solution to the second research question of: How to adapt an
appearance based detector for deployment in a new and novel environment with different back-
ground characteristics to the training data? Compared to the background subtraction methods
presented in the literature review, background modelling for a moving camera needs to be
abstract and motion invariant. To this end, background patches are modelled using unsupervised
learning by grouping common appearances into different clusters to represent the different

categories of background.

This work investigates the combination of two philosophies; namely, use of a general

[Convolutional (Neural) Networks (DCN )(object detector with background modelling techniques

which specialises in identifying if a region only contains background. Such an approach is

63
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(a) ImageNet []Deng et a1.|, |2009|] training images. (b) Images collected during deployment.

Figure 4.1: Sample images illustrating visual dissimilarity between internet based and vehicle mounted images
collected during deployment.

motivated by the difficulty in retraining a[DCN|on imbalanced datasets where the availability of
background data dwarfs the number of labelled deployment specific object training samples. By
checking for novelty against a separate background model the detector itself can be used either
independently without retraining or retrained on a balanced subset of the deployment specific

data.

A method for gathering background patches is presented that is specific to the deployed
environment where only a simple inspection of a video sequence is required to avoid intensive

object labelling. Additionally, this chapter also takes advantage of the recent developments in

[DCNE, in particular, the expressive power of intermediate DCN|features [Razavian et al.,2014]

which are used for describing the background patches. By reusing the computed intermediate
features, this method efficiently validates the [DCN] detections by comparing to the gathered

corpus of background patches.

This chapter contains a journal paper [Bewley and Upcroft, 2016] which extends the prelim-

inary work of Bewley and Upcroft| [2015]. Namely, the journal paper includes further analysis

of the use of region proposals, details an improved variant of the background model and presents
a Bayesian fusion framework for combining the estimates from the and the background
model. As there is redundancy between the two papers, the extended journal version is presented
first, leaving the option to pass over the preliminary conference version. Furthermore, this

chapter includes a comparative study between the proposed weakly supervised background
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model and a pure model trained with significantly more labelled mining data.
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Abstract

This paper addresses the problem of detecting people and vehicles on a surface mine by
presenting an architecture that combines the complementary strengths of deep convolutional
networks (DCN) with cluster based analysis. We highlight that using a DCN in a naive
black box approach results in a significantly high rate of errors due to the lack of mining
specific training data and the unique landscape in a mine site. In this work we propose a
background model that exploits the abundance of background-only images to discover the
natural clusters in visual appearance using features extracted from the DCN. Both a simple
nearest cluster based background model and an extended model with cosine features are
investigated for their ability to identify and suppress potential false positives made by the
DCN. Furthermore, localisation of objects of interest is enabled through region proposals,
which have been tuned to increase recall within the constraints of a computational budget.
Finally, a soft fusion framework is presented to combine the estimates of both the DCN and
background model to improve the accuracy of the detection. Our system is tested on over
11km of real mine site data in both day and night conditions where we were able to detect
both light and heavy vehicles along with mining personnel. We show that the introduction
of our background model improves the detection performance. In particular, soft fusion of
the background model and the DCN output produces a relative improvement in the F1 score
of 46% and 28% compared to a baseline pre-trained DCN and a DCN retrained with mining
images respectively.

1 Introduction

While the mining industry pushes for greater autonomy, there still remains a need for human presence
on many existing mine sites. This places significant importance on the safe interaction between human
occupied and remotely operated or autonomous vehicles. In particular, for reliable collision avoidance it is
necessary to maintain sufficient situational awareness. To improve the situational awareness in regards to
collision avoidance, this work investigates computer vision based techniques for detecting other vehicles and
personnel in the workspace of heavy vehicles such as haul trucks.

Traditionally, methods for detecting other vehicles and personnel from heavy mining equipment have relied
on radio transponder based technologies. Despite transponder based sensors being mature and reliable for
ideal conditions, in practise their reliability is circumvented by practical issues around their two way active

*http://www.roboticvision.org/



nature, portable power requirements, limited spatial resolution and human error. In contrast, computer
vision techniques for object detection aim to recognise the presence of other objects by observing a video
camera feed. This offers a unique alternative that operates passively and can utilise the available cameras on
existing vehicles. Furthermore, it is expected that reliable collision avoidance systems would utilise multiple
sensing technologies to provide a high integrity solution with redundancy.

Detecting and recognising objects has long been a topic of research within the computer vision community,
which has advanced tremendously in recent years as measured by standard benchmarks (Deng et al., 2009;
Lin et al., 2014). These major advancements can be largely attributed to both the availability of huge
annotated datasets (Fei-Fei et al., 2007; Torralba et al., 2008; Deng et al., 2009; Lin et al., 2014) and
developments in data driven models such as deep convolutional networks (DCN) (Krizhevsky et al., 2012;
Sermanet et al., 2013). A DCN effectively models visual appearance through a huge set of parameters
which are tuned by training on a large set of annotated images with relevant objects of interest. In this
work we utilise the DCN of (Krizhevsky et al., 2012) which has shown astonishing performance on the
ImageNet recognition benchmark (Deng et al., 2009) and repurpose it toward recognising personnel and
vehicles from the background in an open pit mining environment. However, naively applying an off-the-shelf
DCN to images collected in a mining environment results in a significant number of false positives due to
the differences in appearance between the training set and the target domain. See Figure 1.

Adapting DCNs to different domains typically requires a large training set relevant to the target domain
(Zeiler and Fergus, 2013; Yosinski et al., 2014). When the amount of training data is small, data driven
approaches tend to over-fit the training samples and not generalise to unseen images. In this work we utilise
a pre-trained DCN using millions of images from ImageNet and experiment with both a naive remapping of
ImageNet to mining classes and compare this to retraining the network with limited data.

With a vehicle mounted camera the focal length is fixed and the viewing angle is rigidly coupled to the
vehicle’s orientation. This distinguishes it from the ImageNet recognition problem where typical images
collected were implicitly pointed at regions of interest and appropriately zoomed. Additionally, due to the
wide field of view the majority of the images are background with zero to potentially multiple objects of
interest visible in any given frame. To address these multi-scale and object localisation issues, we employ
a similar strategy to (Girshick et al., 2014) by applying an initial step for finding likely object locations
through a region proposal process before performing object recognition with the DCN.

Given that the majority of images collected on a mine site contain zero objects of interest, we can efficiently
collect a huge amount of background data suitable for training a linear classifier. Using this newly trained
classifier in conjunction with the DCN ensures robustness and drastically reduces spurious detections. This
classifier is based on k-means clustering offering a convenient way to implicitly partition the background data
into different categories. This approach accurately captures the characteristics of the background, enabling
the discovery of novel non-background objects. In light of this, two approaches are presented for using this
background model to either suppress false background detections or to correct the detection confidence.

Building off the preliminary work in (Bewley and Upcroft, 2015), this article presents an alternative fusion
framework where hard decisions on suppressing background are replaced with a soft probabilistic model. This
enables a soft fusion between the likelihood a sample was generated from the novel background model and
the class prediction probability produced by the DCN classifier. Furthermore, various stages of the pipeline
proposed in (Bewley and Upcroft, 2015) have been optimised to increase either the recall or precision in
order to improve the overall detection performance. Additionally, a new method for discriminating between
background and novel objects is proposed and incorporated to the fusion framework. Finally, a thorough
examination of each component both individually and jointly is performed to highlight the major contributing
factors and gain insight into how the vision based detector behaves in a mine site environment.

This paper is organised as follows: Section 2 provides a short review of related literature in the areas of mine-
site sensing, pedestrian and general object detection, and information fusion. Section 3 describes the various
steps in our approach including analysis for region proposals, adapting DCNs, formulation of the background
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Figure 1: An example of the number of false positives when applying a DCN off-the-shelf in a mining
environment. The colours represent different classes, e.g. person (red) and vehicle (green). The only true
positive is the light vehicle on the left in the bottom image. Best viewed in digital form.



novelty detector, and information fusion. In Section 4 the detection performance of the proposed method is
analysed on a challenging set of mining videos. Finally, Section 5 concludes the paper with a summary of
the learnt outcomes and discussion for future improvement.

2 Related Work

Here we briefly review object detection methods that are not reliant on two way communication before
covering some related work using DCN for generic object detection. Early work has focused on range based
techniques such as LiDAR (Roberts and Corke, 2000; Marshall and Barfoot, 2008) commonly used for
mapping fixed obstacles such as buildings or underground tunnel walls. Applying these sensors to detecting
personnel and vehicles fitted with retro-reflectors is found to be sensitive to the dynamics of the sensor
platform (Phillips et al., 2013). In this work we focus specifically on detecting potentially dynamic obstacles
including vehicles and particularly people from vision based data. To this end, the more relevant prior work
is that of (Mosberger and Andreasson, 2012) which exploits the standardised requirement for personnel on
mine sites to wear high-visibility clothing equipped with retro-reflector patches. This enables a single IR
camera with active flash to highlight personnel in view which can then be used for tracking (Mosberger
et al., 2013). In this work, we do not restrict the detection system to specifically finding retro-reflectors,
but rather formulate the problem as a recognition task focusing on the overall appearance of personnel and
mining vehicles.

Pedestrian detection using computer vision techniques is an actively researched topic (Dalal and Triggs,
2005; Dollér et al., 2009; Benenson et al., 2013; Dollar et al., 2014; Zhang et al., 2015). These techniques
take a sliding window approach, where for each image location, multiple rectangles with different scales and
aspect ratios are examined for the presence of a pedestrian. This examination is generally characterised
by extracting features specifically designed for pedestrians (Dalal and Triggs, 2005) before using a binary
classifier (Dalal and Triggs, 2005; Dollar et al., 2009; Benenson et al., 2013) or cascade of classifiers (Dollar
et al., 2014; Zhang et al., 2015) to determine if the rectangle represents a pedestrian.

Recent popularity of big data and deep learning have dominated the object recognition problem. Among
these data driven approaches, deep convolutional networks (DCN) with recognition performance quickly
approaching human levels (Krizhevsky et al., 2012; Donahue et al., 2013; Razavian et al., 2014; Sermanet
et al., 2014) are selected for use in this work. DCNs themselves have been used for over 20 years (LeCun
et al., 1989) for tasks such as character recognition. Over recent years DCNs have made an astonishing
impact on the task of object recognition within the computer vision community (Krizhevsky et al., 2012;
Farabet et al., 2013; Razavian et al., 2014; Girshick et al., 2014; Donahue et al., 2013) largely contributed
to the availability of huge labelled image sets such as ImageNet (Deng et al., 2009). In this work, we use a
network based on the work of (Krizhevsky et al., 2012) that was pre-trained on ImageNet which we re-purpose
for the mine-site environment with limited label data and large sequences of unlabelled background data.
While even deeper network architectures (Simonyan and Zisserman, 2014; Szegedy et al., 2015) have recently
surpassed the (Krizhevsky et al., 2012) model for the ImageNet task, we continue to use the (Krizhevsky
et al., 2012) model for efficiency and argue that a comparison of network architectures is beyond the scope
of this work.

Recognising what objects are in an image is only half of the object detection problem. The other half is
locating the objects within the image. Sermanet et al. (Sermanet et al., 2014) sample over multiple scales and
exploit the inherently spatially dense nature of the convolutions within DCNs to identify regions with high
responses. Similarly, (Farabet et al., 2013) also perform convolutions over multiple scales and combine the
responses over superpixel segmentation (Felzenszwalb and Huttenlocher, 2004). Another popular approach
and the one that we base this work off is the region convolutional neural network (RCNN) of (Girshick et al.,
2014). The RCNN framework efficiently combines the DCN of (Krizhevsky et al., 2012) with an object
proposal method: selective search (Uijlings et al., 2013). Generic object proposal methods aim to efficiently
scan the entire image at different scales and aspect ratios to reduce potentially millions of search windows



down to hundreds (Hosang et al., 2014) of the most likely candidates. In this work we use edge box object
proposals (Zitnick and Dolldr, 2014) as the accuracy is higher and significantly faster according to a recent
survey of object proposal methods (Hosang et al., 2014).

In this work we make use of information fusion for combining information from both the background model
and the DCN output. In (Bewley and Upcroft, 2015) simple logic was used for combining the output of both
systems, such that if the DCN responded with a car or person and the sample was not background then
it would indicate a detection. This approach creates a hard decision where a failure in either system results
in a miss detection. In contrast, probablistic approaches allow for a softer fusion of information (Dempster,
2008). In this work, we utilise probablistic variants of the DCN and background model in order to formulate
the fusion of information in a classical Bayesian inference framework (Durrant-Whyte and Henderson, 2008).

3 Methodology

In this section, we describe our approach to vision based object detection where we highlight similarities and
differences to the inspiring RCNN pipeline (Girshick et al., 2014). Our method consists of three key phases:
1) Region proposals with non-maximum suppression (NMS), 2) DCN recognition and finally, 3) Detections
are validated by checking for novelty against the background model. See Figure 2 for a high-level overview
of this pipeline. We bypass the problem of over-fitting on a small dataset by using a pre-training DCN and
map its output to mining relevant classes.

The detection method is then extended with the incorporation of background modelling techniques to improve
and adapt to the mining environment. From this background model we investigate two different novelty
measures approximating the probability a detection was not generated by a background sample. This novelty
measure produces a single value on the interval [0, 1] where low values represent a high similarity with the
background model and the high values represent that the sample is novel with respect to the background
model. Finally, we describe how information from both the DCN prediction and the background model are
combined using a probabilistic fusion framework.

3.1 Region Proposals

The aim of region proposals is to efficiently scan the image to eliminate millions of potential windows,
keeping only the regions that are likely to contain an object of interest. We use the EdgeBoxes region
proposal method (Zitnick and Dolldr, 2014) over the selective search (Uijlings et al., 2013) used in the
original RCNN work as this method is orders of magnitude faster with comparable accuracy. For a detailed
comparison of region proposal methods we refer the reader to (Hosang et al., 2014).

Region proposal methods are regarded as a generic object proposal technique that is independent of object
class (Hosang et al., 2014). However, in practice these methods are sensitive to parameter tuning, requiring
data relevant to the target domain for optimal performance (McMahon et al., 2015). The default parameters
for EdgeBoxes were adjusted to return a fixed 1000 proposals and an additional step of non-maximum
suppression (NMS) is applied and described next.

3.2 Non-maximum Suppression

The region proposals provided by the EdgeBoxes method are further reduced through a process of NMS.
The NMS process considers the score produced by the EdgeBoxes (EB) method and the overlap with other
bounding boxes. As the name suggests it then greedily suppresses all but the maximum scoring proposal for
all adjacent overlapping regions where the intersection-over-union (IOU) area is greater than a set threshold.
In contrast to applying NMS after the DCN (Girshick et al., 2014), this way we can speed up the detection
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Figure 2: An illustration of the detection pipeline used in this work. When a new image is provided, the
detection pipeline begins with the region proposal step. The system parameters are highlighted in blue and
green which are learnt offline from an off-the-shelf network and background only images respectively. Purple
represents the responses from an intermediate layer (also depicted as the purple star), that is compared with
the cluster centers of the background model indicated with black crosses. The red output layer of the DCN
contains scores for each class type. The output from the DCN and background model are fused to produce
the systems final output.

pipeline by reducing the number of proposals going into the DCN while maintaining comparable coverage
over the image.

To better understand the effect of applying NMS to the EB scores, the trade-off between the number of
proposals and its effect on the recall is further investigated. Ideally, it is preferable to have as few proposals
needed to cover all visible objects in order to minimise both the computational load of the later DCN and the
overall rate of false positives. Since object proposals is used as the first step in the pipeline, it is paramount
to have a good coverage of the true objects in the image since missed objects will never be recovered (Hosang
et al., 2014). Figure 3 shows a comparison between applying NMS to the region proposals and reducing
the number of proposals using the EB score. The EB4+NMS curve shows that applying small amounts of
NMS rapidly reduces the number of proposals while maintaining high recall. However, when suppressing
proposals with overlaps lower than 0.3 IOU, results in lower performance compared to simply thresholding
the EB score. The S shape of the EB+NMS curve shows that there exist a non-linear relationship between the
localisation accuracy around true objects and the number of proposals. The overlap threshold in this work
is set at 0.5 to produce approximately 260-300 proposals per frame where there is a considerable reduction
in proposals (possibilities for false positives) for a moderate drop in recall.
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Figure 3: Performance of EdgeBoxes (EB) region proposal method along with non-maximum suppression
applied with overlap thresholds set to [0,0.1,0.2,...,0.7] shown with crosses. Note that the EB+NMS curve
converges with the EB curve at NMS threshold of 0.7 since that is the limit used in the EB default parameters.

3.3 Region Classification

Having selected regions of the image that have the general characteristics of an object, we now perform
object recognition to distinguish the object category. For this we apply the DCN from RCNN (Girshick
et al., 2014) which is based on the winning architecture (Krizhevsky et al., 2012) for the ImageNet Large
Scale Recognition challenge in 2012. For this work, we used the RCNN implementation provided with the
Convolutional Architecture for Fast Feature Embedding (caffe) (Jia et al., 2014) framework out-of-the-box
and apply it to classifiying the content of the object proposals generated as previously described.

Since the work in this paper largely gravitates around the recent success of DCNs, we briefly describe their
workings. A DCN consists of multiple layers, each performing a transformation of their input data in the
form of a linear projection followed by a differentiable, non-linear activation function to produce an output
response. A set of weights and biases govern the linear projection step in each layer which essentially
performs an inner product with the input and the weight parameters. The output responses for each layer
forms the input for the following layer in a feed-forward fashion, where the first input is the data and the
last represents a score for each class.

The architecture of (Krizhevsky et al., 2012) used in RCNN consists of eight layers in total with five being
convolutional (convl-convb) and three fully-connected (fc6-fc8). In the convolutional layers, the weights only
connect to a small receptive field in the input — acting like a 2D filter (or kernel) — that is shifted across
the lateral dimensions of the input to perform a 2D convolution. The fully-connected layers on the other
hand, remove the spatial structure of the data by flattening the transformed input before applying an inner
product with their weights to project the entire input into a new high dimensional space. The intuition of



this DCN architecture is that the convolutional layers transform the input into low level visual descriptors
representing local object parts, while the fully-connected layers are responsible for the high-level task putting
the parts together to classify the entire image (Azizpour et al., 2015).

The RCNN architecture consists of around 60 million parameters across all eight layers which were optimised
for classification via deep learning. Deep learning is the process of first applying a each layer transformation
in turn to the input data to produce the network output. The classification error of the network (or loss) is
then used to adjust the weights by an amount proportional to the error with respect to the layer input. As
each layer is differentiable, the chain-rule enables the error to be propagated back to update the parameters
in all layers. Given the high number of parameters, this network was trained using the large ImageNet
dataset consisting of 1.3 million labelled images. Training a model on this scale is enabled through the use
of Stochastic Gradient Descent (SGD).

The original detection task for the caffe RCNN model was to predict one of 200 classes that represent
common objects found in images taken from the internet. For this application we are only interested in
distinguishing between four high level categories, namely: background, person, light vehicles(LV) and
heavy vehicles (HV). Using a DCN model trained on ImageNet in a mining context raises several issues
that need addressing:

1. The majority of the 200 ImageNet classes are indoor/domestic related objects including Food (ap-
ple,burrito, etc.), Musical Instruments (accordion, saxophone, etc.) or various animals (bird, camel,
etc.)

2. How to associate mining classes with ImageNet classes?

3. Semantically, the background is significantly different from many of the existing object specific
classes.

To gain some insight, we use a small validation set of 200 mining related images to investigate the output
of the DCN out-of-the-box. This set is made up of cropped mine-site images containing the classes person,
LV and HV along with 90 interesting region proposals extracted from background only images taken on mine
sites. In Figure 4 we show the results of naively applying the pre-trained RCNN model to this image set.
To better visualise the output we applied a soft-max transform to approximate the output class prediction
as a probabilistic estimate. !

Not surprisingly, the person and LV classes are well represented and can be directly mapped from the
person and car ImageNet classes used to train the original DCN. On the other hand, the background
closely resembles uniform random sampling of classes as there are no relevant classes in the existing model
such as trees, buildings, or road signs etc. Similarly, the HV class prediction also mostly resembles a uniformly
random distribution with a slight bias towards the ImageNet classes snowplow, cart and bus.

3.3.1 Remapped Model

While the person or car class outputs can be simply mapped to person and LV, distinguishing between
background and HV from the output is without avail. From a practical perspective, detecting person and
LV is of higher importance for a passive computer vision system since HV are equipped with active protection
devices. With this in mind, we simply assign all 198 non person or car outputs as background and accept
that not detecting HV is a limitation of this remapping approach.

With this simple class mapping approach and assuming that falsely picking one of the positive classes is in
fact uniformly random, we expect to eliminate 99% of all the proposed background regions. However, when

11t is important to note that this is for visualisation purposes only and that the y-axis does not represent the true probability
since the finalsupport vector machine (SVM) layer of RCNN was not calibrated for probabilistic outputs.
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Figure 4: The average class estimate for a set of mining related images. Notice that person (class 123) and
light vehicle/car (class 36) are existing classes for the pre-trained network and can be used directly. The
background and the heavy vehicle classes are novel and show a wider spread as they are not modelled with
the pre-trained DCN.

processing around 100 proposals per frame, the expected false positive rate is once per frame. Later, we
propose a simple background model that reuses the DCN computation to provide a background likelihood
estimate for reducing this false positive rate.

3.3.2 Retrained Model

An alternative is to train the DCN specifically on mining images for the target classes, including the HV
class. This does raise the issue of learning the DCN parameters from the limited mining specific training
data available. When using a small training set, the DCN can settle into a state that fails to recognise
the wide variety of patterns that occur in the real world. This is largely caused by the massive number
of connections inside a network that tend to converge on the few unique patterns in the training set. To
overcome this effect of over-fitting the training data, many researchers (Ahmed et al., 2008; Aytar and
Zisserman, 2011; Oquab et al., 2014; Yosinski et al., 2014; Azizpour et al., 2015) choose to take a network
pre-trained on a massive dataset such as ImageNet and retrain only the last few layers for the task of
predicting a set of domain specific classes. The intuition behind this is that the visual knowledge gained
from the larger dataset is transferred to the target task to maintain diversity in low level feature extraction
while the higher level classification task is allowed to adapt to the new domain.



3.3.3 Remap vs Retrain

In this work, we took the off-the-shelf DCN with 200 ImageNet outputs and remapped the mining classes
referred to as the remapped DCN. Additionally, we train another model by replacing the last layer entirely
and retrain the network keeping all but the last two layers fixed to prevent over-fitting. This network
was trained until the loss reached zero on the set of 200 labelled mining specific examples. This model is
referred to as retrained. Since the number of labelled examples used for training is small, Figure 5 shows the
retrained model has negligible performance improvement over the remapped version which does not require
any training. However, retraining the network with a softmax loss, effectively trains the model to accurately
produce a probabilistic distribution over the target classes in contrast to using an SVM loss for the last layer
as in (Girshick et al., 2014). As we will later show, this is important when fusing the DCN output with the
proposed background model. Additionally, by retraining the DCN with outputs responsible for predicting
mining related classes, it can be trained to also detect HV with negligible computational overhead.
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Figure 5: A comparison between simply remapping the ImageNet classes to Mining classes based on the
activations shown in 4, versus retraining the network with mining images for classifying the target mining
related categories directly. The average precision (AP) is provided in the legend.

3.4 Background Modelling

While the landscape on a mine-site constantly changes over time in a geometric perspective, the bleak
visual appearance of the background remains predominantly consistent. The aim of this model is to capture
the visual appearance of common background regions which are poorly characterised by the DCN used for
classifying object proposals. At test time a proposal’s similarity to this model provides an additional measure
of confidence to be fused with the prediction output of the DCN model.

For a given background region, it generally belongs to one of an arbitrary set of categories, such as the



semantic categories of rock, sky, tree etc. Rather than using supervised techniques that require a set of
manually annotated images, we instead partition the background data without explicit semantic labels. To
do this, we exploit the assumption that intra-category samples generally appear visually similar to each other,
yet may be distinctively different to other background categories. Put another way, the background regions
form natural clusters enabling us to employ unsupervised techniques to model their visual appearance. See
Figure 6 for an illustration of the natural background clusters found by applying a clustering approach to a
mining dataset.

To describe the visual appearance of each region, the intermediate layers of the DCN provide a free and
compact representation suitable for this task. Additionally, these features have been shown to be robust
against lighting and viewpoint changes without any re-training (Siinderhauf et al., 2015). We refer the
interested reader to (Krizhevsky et al., 2012) for an illustration of the DCN’s inner workings. In general, the
first layer of a DCN extracts simple colour and texture features in the first layer, and through subsequent
layers, these features eventually transition to the learnt specific task (Yosinski et al., 2014) such as classifying
the 200 ImageNet classes. Along the way irrelevant visual information for the original task (e.g. features
describing sky) are lost once it reaches the final layer. With this intuition, we reuse the transformed data
from one of the DCN’s intermediate layers as an appearance descriptor for input to our background model.

To learn this cluster based model, a reservoir of negative samples is required. Gathering background data is
a relatively simple task since only inspection for the presence of target objects is necessary. Specifically, any
image sequence not containing any of the target objects can be used to build an extremely large reservoir
by extracting proposals from each frame.

Ideally this background reservoir should be large enough to contain sufficient diversity to capture the variation
in visual appearances, while also small enough for efficient nearest neighbour querying. To achieve this,
a process called “hard”-negative-mining (Felzenszwalb et al., 2010) is utilised to focus only on the most
informative image regions. Specifically, we run the detection pipeline with the pre-trained RCNN model of
(Girshick et al., 2014) over these background only sequences and keep only regions that falsely classified as
either a person or car. A sufficiently large reservoir can be built by also including near false positive regions
that fall within the SVM margin of the pre-trained RCNN model. In doing this we are left with a collection
of background region patches that are challenging in the sense that the DCN is unable to confidently classify
them as background.

3.4.1 Nearest K-means Cluster Model

The first background model simply consists of a non-parametric model where the Euclidean distance to
the nearest background example is used as a measure of novelty. Since the background reservoir is large,
potentially redundant, and computing Euclidean distances for high dimensional data is slow, it is desirable
to represent the background samples as a few exemplar points. With the intuition that the background
forms natural clusters we choose to represent the background appearance as a set of clusters. Using the
response output from an intermediate layer of the DCN as a visual feature f for a region proposal, the
k-means algorithm is applied to group the reservoir points into clusters. This facilitates the selectable size of
the background model M where the background sample points are the cluster centroids computed as follows:

1 .
mi:Wij,]Gk‘i, (1)
J
where f; is the visual feature of sample j which is a member of the cluster ;.

At test time, each person or LV predicted patch is verified by measuring the Euclidean distance between its
intermediate feature f; and the nearest cluster mean

dy = min, (|, — m). (2)



Figure 6: An illustration showing six of the most common types of background region proposals out of a total
of 128 clusters. The rows represent different clusters while the columns show a random background region
which is a member of the associated cluster. Each cluster gathers samples with similar visual appearance
such as centred on a tree (top row) or centred on sky with an adjacent vertical structure (second row).
Qualitatively, k-means clustering naturally formed mostly pure clusters with the exception of the forth row
which also covers a number of patches occurring with relatively low frequency.
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Figure 7: Detailed view of the distance to nearest cluster distribution for validation images composed of
background and non-background images.

If the nearest background cluster is close in this feature space, i.e. is visually similar, then the likelihood
that the test patch is background should increase. Conversely, it is expected that a patch corresponding to
an object of interest should be dissimilar to the background model, which is signified by a greater distance
to the nearest cluster centre. This expectation is corroborated with empirical evaluation on a small set of
held out background patches and 110 images of non-background objects as shown in Figure 7.

While a hard threshold on the distance between a test patch and the nearest cluster centre can be used to
suppress background detections (Bewley and Upcroft, 2015), a probabilistic version is favoured to enable soft
fusion with other information such as the DCN output. To achieve this, the large collection of background
samples is modelled using a parametric distribution. Figure 8 shows three different parametric distributions
overlaid on the empirical histogram of distances between the background patches and their corresponding
cluster centre. The gamma distribution best fits this data and is therefore used to approximate the likelihood
of distances conditioned on a background sample being supplied. The cumulative density function is then
used as a surrogate to the probability a test sample was not generated by the background as it has the
property of monotonically increasing with the minimum distance to any background cluster. This soft
probabilistic estimate of the test feature f; being a non-background sample is computed using the Euclidean
distance d; to the nearest cluster as:

/Y(aa /Bdt)

P(yBG]\/[|C7é BG) = F(a) 5 (3)

where 7 and I' are the lower and upper incomplete gamma functions following the standard cumulative
distribution function of a gamma distribution. The parameters o and [ represent the shape and rate
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Figure 8: Distribution of background samples as a distance from nearest cluster centre.

parameters of the gamma distribution. These parameters can be estimated by fitting to the reservoir data
as shown in Figure 8.

3.4.2 Joint Cosine Similarity Model

This alternate approach considers the similarity of all background clusters jointly rather than only the most
similar cluster. Here, the similarity from a test sample to all cluster centres from the k-means model is used
to discriminate between background and non-background samples. This enables a non-uniform weighting
for each of the clusters effectively transforming the extracted DCN feature into a new feature space. This
weighting is learnt by formulating the background model as a binary classification where the goal is to
discriminate between background and non-background samples.

Here we reconsider the use of the Euclidean distance for measuring novelty from the background clusters.
Particularly, given the high dimensionality of the DCN features, the Euclidean distance is easily compromised
by the curse of dimensionality (Aggarwal et al., 2001). This would also explain the peculiar property visible
in Figure 8 where the distance from the background samples to their nearest cluster centroid is distributed
far from zero, with low variance. To investigate this, an alternative similarity measure is introduced based
on the cosine distance to the cluster centres, which is considered to be more robust in high dimensions.
In this new background model a weighted sum of all similarity measures between the test sample and the
clusters is used to form a new feature representation.

Algorithm 1, details how the transformation of DCN features into a joint similarity representation along
with learning the weight and bias parameter for a logistic regression. The k x n matrix S is used to store
and represent a set of labelled features F' in their joint similarity form. This transformation essentially



Algorithm 1 Logistic Cosine Background Model Learning

Input: M > Set of all cluster means (Equn. 1)
Input: F > DCN features of example labelled regions.
Input: 1 > Label vector corresponding to F'.
Output: 60,0 > Weights and bias for logistic regression model.

1: function (M, K,1)

2: S =0pxn > Initialise similarity matrix

3 for f; € F' do

4: for m; € M do

5 si,; = cosine_similarity(f;, m;)

6 (6,b) = cross_validation(train_LR(), 10, (S,1)) > Perform 10 fold cross validated learning

return 0,b

compares all n samples in F' with each cluster mean vector using the standard cosine similarity measure
(lines 3-5). Finally, a logistic regression (LR) classifier is learnt on this transformed data using the labels 1
provided (line 6). The weight and bias parameters; 6 and b respectively, are optimised using SGD with kfold
cross validation to select an appropriate amount of regularisation. At test time, the probability that a DCN
feature f; represents a non-background patch is computed by first transforming into the similarity form s;,
and then fed into the LR classifier as follows:

1

P(ysamlc # BG) = 1+ exp—(07s+b)

(4)
where s; is the joint similarity representation vector of the test sample computed as in lines 4 and 5 of
Algorithm 1.

This LR classifier is trained using a held out validation set containing positive and negative patches, where
the learnt separation is shown in Figure 9. In contrast to the k-means model where each cluster is treated with
equal variance, this joint similarity based model captures the intuition that some clusters may have higher
importance when discriminating background for non-background. Additionally, the LR classifier produces
a probabilistic estimate enabling it to naturally fit within a Bayesian framework for fusing the background
model estimate with the DCN class prediction.

3.5 Fusing Measurements

So far we have described how we can adapt a DCN for making predictions of the mining related class
corresponding to each detected proposal. Additionally, a method for extracting features from the DCN,
coupled with a clustering approach forms a good representation for identifying background samples. Here,
we derive how these two measures can be combined with the goal of producing better estimates than either
method individually.

Given the output predictions from both the DCN ypcon and the background model yggar, we can treat
these two predictions as two separate decision makers. While ypony and ypga are not independent i.e.
P(ypen,ysem) # P(ypen)P(ysenr), they are conditionally independent on the object class ¢ expressed
as follows:

P(ypen,ysamlc) = P(ypen|c)P(ypam|c). (5)

This independence enables us to fuse the DCN output, which has good target discrimination capabilities,
while the background model is good at suppressing non-target proposals.

Using Bayes’ Rule the class probability conditioned on the joint output of both the background model and
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Figure 9: An illustration of the separation learnt using a logistic regression model on a small set of 90
background and 110 non-background samples.

the DCN is expressed as:
P(ypon,ysamlc)P(c)
P(ypon,yBanr)

P(clypon,ysam) = (6)
where P(c) is the class prior and P(ypcon,ysaar) is the joint probability of the observation. When selecting
the most likely class, the joint probability of observations can be ignored since it is common for all classes
C;.

c* = argmax;[P(ypon,ypam|ci)P(c;)]. (7)

4 Experiments

4.1 Mining Dataset

The dataset use for evaluating this work was collected from a camera mounted to a light vehicle operating in
an active mine-site, see Figure 10. While the motivation is to put vision based sensing on a heavy vehicle, a
light vehicle is more practical for gathering a diverse set of visual sequences. The cameras used in this study
were 0.9 MP BlackFly cameras produced by PointGrey. The frame-rate was fixed to 10 Hz and maximum
exposure time set to 20 ms to prevent blur. The lens focal length was set to 1.8 mm, translating a to 94
degree horizontal field of view. The dataset contains both static and dynamic instances of a person, LV or
HV.



Figure 10: The experimental dataset gathering vehicle with cameras mounted to the bullbar. Note: all
images used in this paper were captured from the camera on the left hand side of the vehicle.

Continuous video was gathered with and without the camera in motion and on various haul roads and a
few light vehicle only zones to capture variation in the environment. This video data was captured at 10
Hz and partitioned into various sequences. In this work we use 5 sequences where no people or vehicles are
visible to build our background model. Collectively these background sequences make up 8952 frames in
total (approximately 14 km). These sequences are referred to as Train 1-5 in Table 1.

To evaluate the performance we use another 6 sequences with several instances of person, LV or HV, that
were manually annotated using the tool developed by (Vondrick et al., 2012). These annotated sequences
contain 11150 frames in total (approximately 11 km) and referred to as Test 1-6 in Table 1.

In addition to the train and test sequences captured in the field, we made a small validation set of 200
manually cropped images containing mining objects. These validation images were collected from various
sources including the internet along with a few captured at night from the same mine site but in different
locations to the test sequences. This validation set was used throughout the design process to generate
Figures 4, 7, 9, 11, and Figure 12. Table 2 lists the parameters of the system with links to the empirical
studies performed in this work and the dataset sequences used. Note that the study performed for selecting
the NMS did use the test sequences since they are the only sequences available with substantial set of
annotated mining object classes in real life scenarios. However, since the same NMS is applied to all the
classifier models we consider the later comparisons in this experimental section to remain valid.



Table 1: Experimental Image Sequences

Name Total Purpose Environment Conditions Content
Frames

Train 1 2433 Learning Haul road between pits Morning, Sunny BG Only
Clusters

Train 2 1975 Learning In-pit haul road Midday, Sunny BG Only
Clusters

Train 3 1500 Learning In-pit haul road Afternoon, Semi- BG Only
Clusters overcast

Train 4 1669 Learning Haul road between pits Afternoon, Semi- BG Only
Clusters overcast

Train 5 1375 Learning Haul road between pits Evening, Overcast BG Only
Clusters

Validation 200 Parameter = Hand cropped mining images Day and night BG, People, LV, HV
Tuning from various sources®

Test 1 1463 Evaluation  Store yard and processing plant ~ Morning, Sunny People, LV

Test 2 2951 Evaluation  In-pit, haul road and LV area Midday, Sunny People, LV, HV

Test 3 600 Evaluation = Haul road between pits Midday, Sunny People, LV

Test 4 2827 Evaluation In-pit and haul road Midday, Sunny LV, HV

Test 5 1569 Evaluation LV only area Evening, Overcast People, HV

Test 6 1740 Evaluation LV/HV parking area Night, Overcast People, LV, HV

¢ The 200 validation images are made up from both internet images and several challenging background
and night images which were collected in the field but outside of the test sequences 1-6.

4.2 Background Model Validation

Here we describe the experiments performed to design our background modelling system explained in the
previous section. From the 5 background sequences, we applied the region proposal and remapped DCN
detection framework to find challenging region proposals from every tenth frame. While some of the false
objects may be observed in multiple frames, the time difference is sufficient to capture a variety of view
points for these distracting objects. We lowered the detection threshold to collect region proposals if the
remapped DCN predicted either a person or car in the top 5 out of 200 ImageNet class responses. With
this configuration we collect around 8000 hard negatives for our background reservoir. We held out 90 of
the most interesting background regions and added them to the validation set.

To address the design decisions for the background cluster model, we perform an empirical study using the
reservoir containing only negatives and the validation set with both negative and positives. We jointly test

Table 2: System Parameters

Parameter(s) Values Tuning Method Data Used
EB Max Count 1000 Assumed None
NMS Overlap 0.5 Empirical (see Fig. 3) Test 1-5
DCN Remapping * Empirical (see Fig. 4) Validation
DCN Retraining * SGD using classification loss Validation
BGM Clusters (k) 128 Empirical k-means (see Fig. 11) Train 1-5
BGM Euclidean («, 3) (0.015,0.111) Empirical (see Fig. 8) Validation
BGM Cosine (6,b) (*,-38.9) SGD with 10 fold cross validation Validation
Fusion prior (BG, Person, LV,HV) (0.7,0.1,0.1,0.1) Assumed None

* indicates a high dimensional parameter set.



different combinations of DCN layer features and number of clusters by evaluating their performance on the
validation set. For the distance threshold we set this to the distance corresponding to a 95% recall on the
positive set. With the recall fixed, the overall performance of the background model is measured by the
precision at which it can identify a true negative.

In all experiments we use the DCN structure of (Krizhevsky et al., 2012), which is an eight layer network with
five convolutional layers, followed by three fully connected layers. The last layer was adapted to the detection
task (Girshick et al., 2014) with 200 outputs corresponding to the ImageNet detection dataset. For extracting
a feature to describe the background appearance, we consider the response of layers in the network. Figure
11 shows the relative performance of the different DCN layers when sweeping over different background
model sizes measured by the number of clusters used. This experiment shows that the £c6 layer exhibits
substantially higher precision across all model sizes. This could be put down to its position in the network,
where it is the first layer to incorperate the global visual information, as opposed to the convolutional layers.
These findings are in agreement with a recent related study for investigating the performance of transfering
layers where the 6th layer regularly achieves the highest performance on the target task (Azizpour et al.,
2015).

Figure 11 shows that each layer produces a dog-leg shaped curve with a common turning point at 128 clusters.
This signifies a point where the diversity of the environment is sufficiently represented. While increasing the
number of clusters beyond 128 clusters continues to improve precision, the rate of improvement is small. E.g.
for 16x more clusters the improvement is only 1% (89% for 128 versus 90% for 2048 clusters) compared to
a 3% drop when using 16x fewer clusters (86% for 8 clusters). In terms of processing time, both the nearest
neighbour lookup for the k-means Euclidean model and the cosine similarity model is linear in the number of
clusters 2. Since the fc6 layer with 128 provides a reasonable trade-off between precision and computation
speed, these parameters are used in all remaining experiments. A detailed view of the distances between the
validation samples and the nearest cluster centre using these parameters can be seen in Figure 7.

Figure 12 illustrates the samples in this validation set with the largest error. The false negatives are mostly
night images which can be put down to the fact that similar images are rare if not non-existent in the
ImageNet samples used to train the DCN. For the false positives, these are mostly signs which make up
a minority of the scene. From these samples we can describe our background model as a form of novelty
detection where interesting parts of the scene such as signs are distinguished from the general background.
This finding along with the unsupervised clustering shown in Figure 6 are a testament to the DCN’s expressive
capabilities in representing visual similarity.

For the cosine based background model, fc6 features were used and the number of clusters was set to
128, matching the Euclidean k-means model. The logistic regression was trained using stochastic gradient
descent optimisation with regularisation penalty selected though 10-fold cross validation. The resulting
learnt separation between background and non-background was previously shown in Figure 9.

4.3 Detection Evaluation

The system is evaluated on a set of five daytime sequences and one night sequence, where the task is to
detect and locate both people and vehicles within each frame. In this evaluation we follow the same criteria
as described in (Bewley and Upcroft, 2015), where we consider a true detection if at least 50% of the
detection region is covered by a single ground truth object. This differs from the intersection-over-union
(IOU) definition of overlap, as we accept detecting a person’s head and shoulders without their whole body
while IOU would count this as both a miss detection and a false positive. Additionally, if multiple detections
overlap a single ground truth instance, we count this as a single true positive and neither of the overlapping
detections are false. A concrete example would be if a person’s head is covered by a single detection and
their body another. In such a scenario, both are considered valid detections but only count as a single true

2Efficient data structures like kd-trees where considered but due to the high dimensionality the practical improvement was
negligible.
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Figure 11: Cross-validation precision at a fixed recall of 95% for different DCN layers and the number of
clusters used to represent the background. Each point shows average of 5 trials. Pool 3-5 are derived from
convolutional layers 3-5 respectively while the fc6 and fc7 are direct copies of the fully connected layer
responses. Note: the z-axis is in logs scale.

positive per object. It should be also noted that any detection or miss detection of an object labelled as
partially occluded in the ground truth is ignored in this evaluation. Only the retrained model and the fused
models are capable of detecting HV so were omitted from the valuation across the different models for fair
comparison. To accommodate this, any detections which overlap with HV objects are considered as neither
true or false and are excluded from the evaluation.

Figure 13 shows both a failure example on the left and valid detections on the right for each sequence.
Sequence 1 (top row), is located near a store yard and a processing plant where there are a number of
regions with varying appearance making this sequence particularly challenging for the background model.
This sequence has a lower precision as there are a number of novel regions in this environment that mitigate
the benefits provided from the background model trained on common background sequences. The remapped
DCN model is less effected by this as some of the 200 ImageNet classes contain sufficient diversity to compete
with the person and LV class responses. The second sequence was captured around an in-pit go-line, where
mine workers transition between operating LV and HV. In this environment, the fused model performs
exceptionally well in detecting person and LV, however, HV would occasionally be missed or misclassified
as LV. The third and forth sequences were captured along main haul roads, between pits and in the pit
(respectively), representing the typical operating environments for HV. In this environment the fusion of the
background model nearly elimintates all the false positives caused by trees and other common road side
objects. However, novel objects such as signs and cones are sometimes detected (e.g. in the fourth row
of Figure 13 a distant “Reduce Speed” sign is mistaken for a person). The fifth sequence was taken in
the late afternoon in semi-overcast weather conditions and consists of multiple mine workers in view of the
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Figure 12: Validation samples where the nearest k-means background cluster model failed. Images are shown
in their warped form, representing the DCN input. The four right false negatives were collected at night.

camera. The final sequence was shot at night around the mine’s LV parking area where significant activity
was observed — coinciding with a shift change. Under these conditions the fused model is able to detect both
people and LV while it also appears to have learnt to distinguish between yellow lights mounted to vehicles
and white lights such as the bright spot corresponding to a saturated retro-reflective sign to the left of the
distance LV in the bottom right image of Figure 13.

Table 3 shows a detailed breakdown in the performance of all individual components and the fused method.
Here we have separated the performance of each component to isolate the behaviour of the DCN and the
background models (BGM). For all models the detection probability threshold was set to 0.5, except the
(Bewley and Upcroft, 2015) model which was based on a Euclidean distance to achieve 95% recall on the
validation set. The DCN output generally has a high recall but low precision as the DCN does not consider
the class prior probability.

The two BGM models behave considerably differently from each other. Particularly the model based on
the Euclidean distance to the nearest neighbour presents high recall as this was by design in the threshold
selection. However it is interesting that the performance in both precision and recall significantly dropped
compared to the held out validation set used in tuning the distance distribution parameters. On the other
hand, the Cosine based BGM has significantly improved the recall, resulting in an overall F1 score that is
compatible to the DCN output. Despite using a roughly assumed class prior, the soft fusion between the
retrained DCN and cosine BGM, enables the fused model to take advantage of both the high DCN recall
and the BGM’s precision to produce an overall top F1 score.

5 Conclusions and Future Work

Visual object detection has the potential to make a significant impact to improving safety in the mining
industry. The goal of this work is to address the gap in situational awareness of heavy mining vehicles to
sense other vehicles and personnel without active transponders. Towards achieving that goal, this paper
presented a passive, vision-only detection system that takes advantage of recent developments in computer



Figure 13: Exemplar images of fused model with images containing at least one false positive or miss
detection in the left column and only true positives on the right. Each row represents the sequence order 1
to 6 corresponding to the results in Table 3. The colours denote the predicted class of the object with: red
for Person, green for LV and blue for HV. Note: detecting and recognising HV is attributed to the retrained
component of the fused model.



Table 3:

Detection Performance on Mining Sequences

F1 (Precision, Recall)

Sequence DCN DCN BGM BGM Cosine  Fused
(frames) Remapped®  Retrained Euclidean
Test 1 0.33 0.17 0.07 0.23 0.27
(0.24,0.54) (0.10,0.72) (0.04,0.67) (0.14,0.57) (0.17,0.67)
Test 2 0.81 0.80 0.22 0.73 0.90
(0.72,0.93) (0.68,0.98) (0.12,0.92) (0.69,0.78) (0.87,0.94)
Test 3 0.04 0.09 0.01 0.12 0.69
(0.02,0.46) (0.05,0.68) (0.01,0.55) (1.00,0.06) (0.90,0.56)
Test 4 0.26 0.42 0.10 0.56 0.68
(0.15,0.89) (0.27,0.96) (0.05,0.93) (0.46,0.73) (0.58,0.82)
Test 5 0.43 0.72 0.25 0.60 0.83
(0.33,0.62) (0.58,0.93) (0.15,0.89) (0.79,0.48) (0.88,0.78)
Test 6 0.57 0.61 0.47 0.60 0.59
(0.54,0.60) (0.49,0.83) (0.32,0.86) (0.48,0.80) (0.49,0.75)
Overall 0.475 0.541 0.202 0.550 0.692
(0.39,0.75)  (0.42,0.90)  (0.12,0.86)  (0.56,0.66)  (0.65,0.80)

@ This is a soft probabilistic version of the method presented in (Bewley and Upcroft, 2015).
Bold indicates the best performance across models.

vision and machine learning to detect both personnel and mining vehicles. This sensing approach was
evaluated in an active open-pit mine site environment across six different parts of the mine and at both day
and night. Challenges around over-fitting on a small dataset were addressed by exploring a fusion framework
incorporating a pre-trained DCN and exploring both remapping and retraining the final layers for adapting
to the mining environment.

The experiments show that the in-pit environment is suitable for vision based detection utilising object
proposals and DCNs, along with background modelling techniques. The experiments also show that the
amount of NMS applied to the proposed regions can increase the proposal recall compared to the same
number of proposals selected using the proposal score. However, it was also shown that this improvement
has limited range in the amount of NMS applied. This characteristic, to a degree, could be contributed
to the differences in the mining environment compared to the typical internet based images used in the
development of the EdgeBox proposal method used in this work.

When applying an off-the-shelf DCN pre-trained for the ImageNet detection task to mining imagery we
highlight that it performs poorly on both the background and the mining specific HV class. While this method
has the advantage of retaining knowledge of the large amounts of data from ImageNet for the common classes,
it is restricted in its ability to distinguish new and novel classes. On the other hand, retraining the final
layers using mining images overcomes this limitation allowing the HV class to be distinguished from the
background, person and LV classes. However, with the limited amount of labelled training data available,
this retrained model is comprable to simply remapping the classes from the pre-trained ImageNet model.

The use of a DCN alone for visual object detection is shown to perform poorly when presented with typical
mining imagery such as a haul road environment. To overcome this limitation, two variants of a background
model are presented in this work for the purpose of suppressing the false positives produced by the DCN.
The soft probabilistic variant of the background model when fused with the DCN output offers superior
performance over the logic based combination previously used for background suppression in (Bewley and
Upcroft, 2015). Quantitatively, the fused model presented achieves a relative improvement in F1 score of
46% over a pre-trained DCN and 28% over a DCN retrained with mining images.



This article also presents an improved variant of the background model shown to have several desirable at-
tributes. Firstly, the visual feature descriptor is already computed as part of the DCN recognition. Secondly,
it only required the bare minimum labelling effort to build a large reservoir of background only samples. It
is made robust to the high dimensional nature of the DCN features by using the cosine similarity followed
by logistic regression. All its parameters can be estimated from a small set of labelled images. Also the
cosine variate provides superior background discrimination over the simpler k-means model, achieving a
detection accuracy comparable to the best DCN baseline model on its own. Moreover, the higher precision
of the cosine background model makes it complementary to the high recall DCN when used in a fusion
framework. However, in sequences where the background differed significantly from the background only
training sequences its performance dropped considerably. This combined with the use of a static offline
trained background limits this approach to having either a comprehensive training set or restricting the
detection to similar environments, e.g. only haul roads. Future work in addressing this issue could include
learning the background cluster online by incorporating additional information from other sources.

The Bayesian fusion framework for combining the outputs of the DCN and the background model is basic
and assume independence. Despite its simplicity, the improvement in F1 score of the fused model over
its counterparts suggest there is value in combining these methods. Future work could include alternative
fusion techniques such as cascade architectures to improve computational efficiency or introducing other
sensor information.

Another characteristic of this work is that it does not retain any temporal information. In particular the
feed-forward architecture of the DCN treats each frame in the video like it is seeing it for the first time. An
advantage of this is that the framework is robust to motion experienced by either the object or camera by
performing the detection of each frame independently. The disadvantage of this is that temporal memory is
useful in video as objects move gradually in the image which can be exploited through tracking techniques
to improve recall. Also, while this work is only concerned with single camera based sensor data we see many
opportunities to combine techniques incorporating, motion segmentation (Bewley et al., 2014), odometry
(Hawke et al., 2015), stereo (Bewley and Upcroft, 2013) or range-based sensors for improved robustness.
Additionally, as more labelled mining image data becomes available we expect to be able to design and
fine-tune a DCN that performs better in this domain than the existing network designed for the ImageNet
benchmark.
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From ImageNet to Mining: Adapting Visual
Object Detection with Minimal Supervision

Alex Bewley and Ben Upcroft

Abstract This paper presents visual detection and classification of light vehicles
and personnel on a mine site. We capitalise on the rapid advances of ConvNet based
object recognition but highlight that a naive black box approach results in a signif-
icant number of false positives. In particular, the lack of domain specific training
data and the unique landscape in a mine site causes a high rate of errors. We exploit
the abundance of background-only images to train a k-means classifier to comple-
ment the ConvNet. Furthermore, localisation of objects of interest and a reduction
in computation is enabled through region proposals. Our system is tested on over
10km of real mine site data and we were able to detect both light vehicles and per-
sonnel. We show that the introduction of our background model can reduce the false
positive rate by an order of magnitude.

1 Introduction

While the mining industry pushes for greater autonomy, there still remains a need for
human presence on many existing mine sites. This places significant importance on
the safe interaction between human occupied and remotely operated or autonomous
vehicles. In this work, we investigate a vision based technique for detecting other
vehicles and personnel in the workspace of heavy vehicles such as haul trucks.
Traditionally, methods for detecting light vehicles and personnel from heavy
mining equipment have relied on radio transponder based technologies. Despite
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transponder based sensors being mature and reliable for ideal conditions, in practise
their reliability is circumvented by practical issues around their two way active na-
ture, portable power requirements, limited spatial resolution and human error. Using
computer vision offers a unique alternative that is passive and readily available on
existing remotely operated vehicles.

Vision based object recognition has made tremendous progress as measured by
standard benchmarks [4, 16]. The major advancements in this area can be attributed
to both the availability of huge annotated datasets [7, 26, 4, 16] and developments in
data driven models such as deep convolutional networks (ConvNets) [13, 24]. In this
work we utilise the ConvNet of [13] which has shown astonishing performance on
the ImageNet recognition benchmark [4] and extend it to data collected from mine
sites with minimal training.

Using ConvNets in different domains requires a large training set relevant to the
target task [29]. When the amount of training data is small, data driven approaches
tend to over-fit the training samples and not generalise to unseen images. In this
work we utilise a pre-trained ConvNet using millions of images from ImageNet and
address how to map the original ImageNet classes to mining classes with minimal
training effort.

Another consideration regarding this application is that cameras are rigidly cou-
pled to the vehicles orientation and configured with a fixed focal length. This distin-
guishes it from the ImageNet recognition problem where typical images collected
were implicitly pointed at regions of interest and appropriately zoomed. Addition-
ally, due to the wide field of view the majority of the images are background with
zero to potentially multiple objects of interest visible in any given frame. To locate
the objects, we follow a similar strategy to [10] and apply an initial step for finding
likely object locations through a region proposal process before performing object
recognition with the ConvNet.

Given that the majority of the images collected in a mine site dataset have zero
objects of interest in them, we can provide a standard classifier with a huge amount
of labelled background data. Using this newly trained classifier in conjunction with
the ConvNet ensures robustness and drastically reduces spurious detections. This
classifier is based on k-means clustering offering a convenient way to partition the
background data into different categories. This approach accurately captures the
characteristics of the background, enabling the discovery of novel non-background
objects.

The contributions of this paper are:

adapting ConvNets to new scenes in a mining context,
complementing the powerful classification provided by ConvNets with a simple
classifier trained on background mine data for increased robustness,

e anovelty detector using ConvNet feature clustering.

This paper is organised with a short review of related literature before describing
the proposed method in greater detail. We then analyse the performance of the pro-
posed method on a challenging set of mining videos and conclude with a discussion
of the learnt outcomes and avenues for future improvement.
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2 Related Work

Here we briefly review object detection methods that are not reliant on two way
communication before covering some related work using ConvNets for generic ob-
ject detection. Early work has focused on range based techniques such as LiDAR
[22, 17] commonly used for mapping fixed obstacles such as buildings or under-
ground tunnel walls. Applying these sensors to detecting personnel and vehicles
fitted with retro-reflectors, is found to be sensitive to the dynamics of the sensor
platform [20]. In this work we focus specifically on detecting potentially dynamic
obstacles including vehicles and particularly people from vision based data. To this
end, the more relevant prior work is that of [18] which exploits the standardised re-
quirement for personnel on mine sites to wear high-visibility clothing equipped with
retro-reflector strips. This enables a single IR camera with active flash to highlight
personnel in view which can then be used for tracking [19].

Recent popularity of big data and deep learning have dominated the object recog-
nition problem. Among these data driven approaches, deep convolutional neural net-
works (ConvNets) with recognition performance quickly approaching human levels
[13, 5, 21, 23] are selected for use in this work. ConvNets themselves have been
used for over 20 years [14] for tasks such as character recognition. Over recent
years ConvNets have made an astonishing impact on the computer vision commu-
nity [13, 6, 21, 10, 5] thanks to the availability of huge labelled image sets such as
ImageNet [3].

Recognising what objects are in an image is only half of the object detection
problem. The other half is locating the objects within the image. Sermanet et al.
[23] sample over multiple scales and exploit the inherently spatially dense nature
of the convolutions within ConvNets to identify regions with high responses. Simi-
larly, [6] also perform convolutions over multiple scales and combine the responses
over superpixel segmentation [9]. Another popular approach and the one that we
base this work off is the region convolutional neural network (RCNN) of [10]. The
RCNN framework efficiently combines the ConvNet of [13] with an object proposal
method: selective search [27]. Generic object proposal methods aim to efficiently
scan the entire image at different scales and aspect ratios to reduce potentially mil-
lions of search windows down to hundreds [11] of the most likely candidates. In
this work we use edge box object proposals [30] as the accuracy is higher while also
running at an order of magnitude faster [11].

3 Methodology

In this section we outline our detection pipeline and how it differs from [10]. Our
method consists of three key phases: 1) Region proposals with non-maximum sup-
pression (NMS), 2) ConvNet recognition and finally, 3) Detections are validated
by checking for novelty against the background model. See Fig. 1 for a high-level
overview of this pipeline. We bypass the problem of over-fitting on a small dataset
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Fig. 1 An illustration of the detection pipeline used in this work. The system parameters are high-
lighted in blue and green which are learnt offline from an off-the-shelf network and background
only images respectively. Note the red output layer of the ConvNet outputs are ImageNet classes
(200 different). Any car or person is suppressed if it also matches the background model to min-
imise the number of false positives.

by using a pre-training ConvNet and map its output to mining relevant classes. This
method is then extended with our proposed background modelling technique to sig-
nificantly reduce the number of false positives generated by the system.

3.1 Region Proposals

The aim of region proposals is to efficiently scan the image to eliminate millions
of potential windows, keeping only the regions that are likely to contain an ob-
ject of interest. We use the EdgeBoxes region proposal method [30] over the
selective search [27] used in the original RCNN work as this method is
orders of magnitude faster with comparable accuracy. For a detailed comparison of
region proposal methods we refer the reader to [11].

The default parameters for EdgeBoxes were adjusted to return a fixed 1000
proposals. These region proposals are then further reduced to approximately 100
regions through a process of non-maximum suppression (NMS). The NMS pro-
cess considers the score produced by the EdgeBoxes method and the overlap with
other bounding boxes. As the name suggests it then greedily suppresses all but the
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maximum scoring proposal for all adjacent regions overlapping by 30% or more. In
contrast to applying NMS after the ConvNet [10], this way we can speed up the de-
tection pipeline by reducing the number of proposals going into the ConvNet while
maintaining comparable coverage over the image.

3.2 Region Classification

Having selected regions of the image that have the general characteristics of an ob-
ject, we now perform object recognition to distinguish the object category. For this
we apply the ConvNet from RCNN [10] which is based on the winning architecture
[13] for the ImageNet Large Scale Recognition challenge in 2012. For this work,
we used the RCNN implementation provided with the Convolutional Architecture
for Fast Feature Embedded (caffe) [12] framework out-of-the-box.

The original detection task for RCNN was to predict one of 200 classes that
represent common objects found in images taken from the internet. For this appli-
cation we are only interested in distinguishing between three high level categories,
namely: background, personand 1ight vehicles (LV). Using this model
in a mining context raises several issues that need addressing:

1. Most of the 200 classes are irrelevant, e.g. jellyfish, miniskirt, unicycle etc.

2. How to associate mining classes with ImageNet classes?

3. Semantically the background is significantly different from many of the ex-
isting object specific classes.

To gain some insight, we use a small validation set of 200 images to investigate
the output of the ConvNet out-of-the-box. This set is made up of cropped mine-
site images containing the classes person and LV along with 90 interesting re-
gion proposals extracted from background only images. We also included a few
heavy vehicles (HV) images in this set but keep them as a separate class to
identify any correlations. In Fig. 2 we show the results of naively applying the pre-
trained RCNN model to this image set. To better visualise the output we applied
a soft-max transform to approximate the output class prediction as a probabilistic
estimate. !

Not surprisingly, the person and LV classes are well represented and can be
directly mapped from the person and car ImageNet classes used to train the
original ConvNet. On the other hand, the background closely resembles uniform
random sampling of classes as there are no relevant classes in the existing model
such as trees, buildings, or road signs etc. Similarly, the HV class prediction also
mostly resembles a uniformly random distribution with a slight bias towards the
ImageNet classes snowplow, cart and bus. As for this application, we are only

!'It is important to note that this is for visualisation purposes only and that the y-axis does not rep-
resent the true probability since the final SVM layer of RCNN was not calibrated for probabilistic
outputs.
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Fig. 2 The average class estimate for a set of mining related images. Notice that person (class
123) and light vehicle/car (class 36) are existing classes for the pre-trained network and can be
used directly. The background and the heavy vehicle classes are novel and show a wider spread as
they are not modelled with the pre-train ConvNet.

concerned with distinguishing person and LV from the background, we simply
assign all 198 non person or car outputs as background.

With this simple class mapping approach and assuming that falsely picking one
of the positive classes is in fact uniformly random, we expect to eliminate 99% of all
the proposed background regions. However, when processing around 100 proposals
per frame, the expected false positive rate is once per frame. Next we propose a
simple background model that reuses the ConvNet computation to provide a back-
ground likelihood estimate for reducing this false positive rate.

3.3 Background Modelling

While on a mine-site the landscape is constantly changing from a geometric per-
spective, the bleak visual appearance of the background is generally constant. For
this, we model the background regions as belonging to one of an arbitrary set of
categories, such as the semantic categories of rock, sky, tree etc. If a sample dif-
fers significantly from any of these background classes then we can assume it is an
object of interest.

Rather than using supervised techniques that require a set of manually annotated
images, we instead partition the background data without explicit semantic labels.
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Fig. 3 Anillustration showing six of the most common types of background region proposals. The
rows represent different clusters while the columns show a random background region which is a
member of the associated cluster. Each cluster gathers samples with similar visual appearance such
as centred on a tree (top row) or centred on sky with an adjacent vertical structure (second row).

To do this, we exploit the assumption that intra-category samples generally appear
visually similar to each other, yet may be distinctively different to other background
categories. Put another way, the background regions form natural clusters enabling
us to employ unsupervised techniques to model their visual appearance. See Fig. 3
for an illustration of the natural background clusters found by applying this method
to a mining dataset.

To describe the visual appearance of each region, the intermediate layers of the
ConvNet provide a free and compact representation suitable for this task. Addition-



8 Alex Bewley and Ben Upcroft

ally, these features have been shown to be robust against lighting and viewpoint
changes without any re-training [25]. We refer the interested reader to [13] for an
illustration of the ConvNet’s inner workings. In general, the first layer of a ConvNet
extracts simple colour and texture features in the first layer, and through subsequent
layers, these features eventually transition to the learnt specific task [29] such as
classifying the 200 ImageNet classes. Along the way irrelevant visual information
for the original task (e.g. features describing sky) are lost once it reaches the final
layer. With this intuition we reuse the transformed data from one of the ConvNet’s
intermediate layers as an input to our background model.

To learn this cluster based model, a reservoir of negative samples is required.
Gathering background data is a relatively simple task since only inspection for the
presence of target objects is necessary. Specifically any image sequence not con-
taining any of the target objects can be used to build an extremely large reservoir
by extracting proposals from each frame. Furthermore, we only focus on difficult
regions by perform hard-negative-mining [8] of background samples by running
the ConvNet detection pipeline over these sequences. By lowering the confidence
threshold, near false positive background regions can also be added to build a suffi-
ciently large reservoir.

After extracting an intermediate layer of the ConvNet for each background patch,
we then cluster these samples using k-means clustering. At test time, each person
or LV predicted patch is verified by measuring the Euclidean distance between its
intermediate feature and each cluster centre. If the nearest background cluster is
close in this feature space, i.e. is visually similar, then we suppress the detection
and regard it as background.

In building this background model the following choices are to be made: Which
layer from the ConvNet? How many clusters? At what distance should a sample be
considered background? In the following section we address these design choices
through experimental validation.

4 Experiments

4.1 Mining Dataset

The dataset we use for evaluating this work was collected from a light vehicle
mounted camera operating in an active mine-site, see Fig. 4. While the motivation
is to put vision based sensing on a heavy vehicle, a light vehicle is more practical
for gathering a diverse set of visual sequences. The dataset contains both static and
dynamic instances of a person, LV or HV.

Continuous video was gathered with and without the camera in motion and on
various haul roads and a few light vehicle only zones to capture variation in the
environment. This video data was captured at 10 fps and partitioned into various
sequences. In this work we use 5 sequences where no people or vehicles are visible
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Fig. 4 The experimental dataset gathering vehicle with cameras mounted to the bullbar. Note: all
images used in this paper were captured from the camera on the left hand side of the vehicle.

to build our background model. Collectively these background sequences make up
8952 frames in total (approximately 14km).

To evaluate the performance we use another 5 sequences with several instances
of person, LV or HV, that we personally annotated using the tool developed by
Vondrick et al [28]. These annotated sequences contain 9405 frames in total (ap-
proximately 10km). In addition to these sequences we made a small validation set
of 200 using other images collected on a mine site from various sources including a
few captured at night. This set was used to generate Fig. 2.

4.2 Background Model Validation

Here we describe the experiments performed to design our background modelling
system explained in the previous section. From the 5 background sequences, we
applied the region proposal and ConvNet detection framework to find challenging
region proposals from every tenth frame. While some of the false objects may be
observed in multiple frames, the time difference is sufficient to capture a variety
of view points for these distracting objects. We lowered the detection threshold to
collect region proposals if the ConvNet predicted either a person or car in the
top 5 out of 200 class responses. With this configuration we collect around 8000
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hard negatives for our background reservoir. We held out 90 of the most interesting
background regions and added them to the validation set.

To address the design decisions for this model, we perform an empirical study
using the reservoir containing only negatives and the validation set with both nega-
tive and positives. We jointly test different combinations of ConvNet layer features
and number of clusters by evaluating their performance on the validation set. For the
distance threshold we set this to the distance corresponding to a 95% recall on the
positive set. With the recall fixed, the overall performance of the background model
is measured by the precision at which it can identify a true negative.

Fig. 5 shows the relative performance of sweeping the number of clusters for
different ConvNet layers. While £c6 layer with 2048 clusters achieved the highest
precision of 90% we instead opted to use only 128 clusters with a precision of 89%
which is significantly faster to compute. A detailed view of the distances between
the validation samples and the cluster centres can be seen in Fig. 6.

0.95 Background Feature Selection Background Model using 'fc6' with 128 Clusters
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Fig.5 Cross-validation precision at 95% recall Fig. 6 Detailed view of the distribution of
for different ConvNet layers and the number  the validation images distance to their nearest

of clusters used to represent the background. background cluster centre. The grey line marks
Each point shows average of 5 trials. the 95% recall distance threshold.

Implementation Detail

The first 5 ConvNet layers produce dense tensor representations which gradu-
ally reduce in size. Then there are two fully connected layers £c6 and
fc7 before the final prediction layer. Again we refer the interested reader to
[13] for details of the ConvNet structure. Due to the density of data and the
computational complexity of computing distances in such high dimensional
feature spaces we only evaluate the ConvNet layers 3-7 and compress convo-
lutional layers 3-5 by pooling all filter responses across the feature map for
each tensor in [15] this is referred to global average pooling. In Fig. 5 these
are marked as pool{3-5}_gap.
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Fig. 7 Validation samples where the background model failed. Images are shown in their warped
form, representing the ConvNet input. The four right false negatives were collected at night.

The false negatives and some of the false positives are also shown in Fig. 7. The
false negatives are mostly night images which can be put down to the fact that sim-
ilar images are rare if not non-existent in the ImageNet samples used to train the
ConvNet. For the false positives, these are mostly signs which make up a minor-
ity of the scene. From these samples we can describe our background model as a
form of novelty detection where interesting parts of the scene such as signs are dis-
tinguished from the general background. This finding along with the unsupervised
clustering shown in Fig. 3 are a testament to the ConvNet’s expressive capabilities
in representing visual similarity.

4.3 Detection Evaluation

We now evaluate the system on the set of 5 sequences with person or LV where
the task is to locate objects of interest. In this evaluation we consider a true de-
tection if at least 50% of the detection region is covered by a single ground truth
object. This differs from the intersection-over-union (IOU) definition of overlap, as
we accept detecting a person’s head and shoulders without their whole body while
IOU would count this as both a miss detection and a false positive. It should be also
noted that any detection or miss detection of a person or LV labelled as partially
occluded in the ground truth is ignored in this evaluation. While the system is not
designed to detect HV we consider any detections which overlap with HV objects as
neither true or false and are excluded from the evaluation. Additionally, if multiple
detections overlap a single ground truth instance, we count this as a single true pos-
itive and neither of the overlapping detections are false. An example would be if a
person’s head is covered by a single detection and their body another.
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Table 1 shows the performance of the system before and after applying back-
ground suppression. From these results we can see that while there is a slight drop
in recall our method for suppressing background regions reduces the false positive
rate by an order of magnitude.

Table 1 System Comparison before and after Background Suppression (BGS) on Mining Se-
quences

Sequence F1 Score“(Precision, Recall) ~ Mostly Hit” Mostly Missed?  False Positives

(frames) baseline with BGS? - BGS - BGS - BGS

1 (1462) 0.38 0.40 2 2 16 16 242 87
(0.57,0.29) (0.77,0.27)

2 (2950) 0.94 0.93 3 3 6 6 73 47
(0.96,0.91) (0.97,0.89)

3 (599) 0.02 0.06 0 0 2 2 349 0
(0.01,0.09) (1.00,0.03)

4 (2826) 0.64 0.80 2 1 4 5 186 9
(0.56,0.74)  (0.95,0.69)

5 (1568) 0.68 0.43 4 1 3 6 177 24

(0.78,0.61) (0.92,0.28)

Total 11 7 31 35 1027 167

¢ F1, Precision and Recall is computed treating each frame as independent.

b Mostly indicates where a single object instance was detected or missed 50% of the time.

¢ The proposed background suppression (BGS) is applied to the baseline EdgeBox and ConvNet
detector.

5 Conclusions and Future Work

In this paper we presented a vision only system that takes advantage of recent devel-
opments in computer vision and machine learning to detect both personnel and light
vehicles. We circumvented the problem of ConvNet over-fitting on small datasets
by reusing a pretrained model directly and mapping its output to mining classes. We
further presented a method for exploiting the abundance of background only im-
ages to learn a background cluster model leading to a significant reduction in false
positives. This sensing approach was evaluated in an active open-pit mine site en-
vironment. The experiments show that the in-pit environment is suitable for object
proposals along with background modelling techniques such as the one presented
here.

While this work is only concerned with single camera based sensor data we see
many opportunities to combine techniques incorporating stereo [2] or range-based
sensors [20] for improved robustness. As an initial investigation of vision as a possi-
ble sensor on a mine we see many opportunities to further improve on the results. As
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more labelled mining image data becomes available we expect to be able to design
and fine-tune a ConvNet that performs better in this domain than the existing net-
work. We also plan to extend this work to fuse information from multiple frames by
combining the ConvNet appearance model with recent motion segmentation tech-
niques [1].
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Further Analysis

Given the lack of domain specific training data in the context for learning an object detector
for mine site operations, this chapter proposed a background model which can be trained
with minimal supervision. Comparisons with a[DCN| pretrained on ImageNet data (previously
denoted as Remapped) and fine-tuned with limited amounts of mining images (previously
denoted as Retrained), showed that fusing predictions from the retrained method with
the proposed background model greatly improved the detection performance. If more mining
related training data was available, we expect the detector to further increase in perfor-
mance, thus mitigating the need for a weakly supervised background model. The remainder of
this chapter analyses the value of the proposed weakly supervised background model compared

to providing significantly more labelled data for training the detector.

To extend the amount of labelled training data, the positives from all six test sequences from
Table 1 in [Bewley and Upcroft, |2016]] are used to train six models in a leave-one-sequence-
out form of cross validation. The evaluation criteria matches what was described earlier in
[Bewley and Upcroft, 2016]. For a fair comparison the same features from each box proposal is
provided to training the network as seen by the background model. In other words, the earlier
convolutional layers are fixed while the fully connected layers are optimised for the additional
training data. Preliminary experiments without fixing these layers lead to over-fitting as the

ImageNet weights were catastrophically forgotten.

Table 4.1: F1-score Detection Performance on Mining Sequences

Sequence DCN DCN Fused Minimal
Retrained Minimal Retrained Full

Test 1 0.17 0.75 0.27
Test 2 0.80 0.75 0.90
Test 3 0.09 0.89 0.69
Test 4 0.42 0.64 0.68
Test 5 0.72 0.81 0.83
Test 6 0.61 0.68 0.59
Overall 0.541 0.727 0.692

Bold indicates the best performance across models.

Tablel. I|reports the aggregate F1 score as the mean performance metric across all six model
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training-validation splits. The Retrained (Minimal) and Fused models from [Bewley
and Upcroft, 2016] are shown here for comparison. The DCN Retained Full column shows
the performance of training the [DCN| using both all the positives and hard negatives from the
other five mining sequences. This represents over 40x more positive training samples per split
compared to the Retrained Minimal (8086 vs. 200). However, it is important to note
that there is a high degree of correlation across positive samples due to the natural temporal

consistency inherent in sequential data.

The results show an overall 19% gain for the model with significantly more training data
which also out-performs the background fused model on half of the sequences. This supports
the notion that DCN| based detectors can benefit from significant amounts of domain specific
training data. However, the background fused model still achieves the better F1 score on
sequences 2, 4, and 5 which are mostly in the mining pit indicating that the background model

is still more reliable in the mine site environment.

From this further analysis, it is clear that gathering significantly more training data in the
target specific domain dramatically improves the performance of detectors. Although,
in specific areas of the mine, a background model with minimal supervision is preferable,
suggesting that future work should investigate novel hybrid methods conditioned on the place

of deployment.



Chapter 5

Improved Tracking through Self-Supervised

Learning

In this chapter, the idea of learning an appearance model from the environment in which
the system has been deployed is extended to object tracking. While a form of tracking was
achieved in Chapter [3| only objects which move in the scene were tracked as opposed to
general (potentially stationary) objects of a particular category. Furthermore, the appearance
information learnt for the tracked objects was tied to a specific instance requiring the appearance
of newly discovered instances to be learnt from scratch. This limitation stems from the classifier
design where labels represented the object identities and the simple point features lacked the

expressive capability to generalise.

Earlier, Chapter f] demonstrated that features extracted from an intermediate layer of a
generalise for tasks beyond object classification. Specifically, the same features used for
detection were also used for finding background clusters with similar visual appearance. Given
that these features are useful for both detection and measuring visual similarity, it is expected

that they are also useful for tracking.

This chapter employs the tracking-by-detection paradigm to decouple the detection and
tracking tasks. In particular, any general object detector can be used to locate object instances in
the current frame. These detections are then provided to the tracking component responsible for
assigning them to tracked objects in the previous frame. A key challenge of visual tracking is
estimating the assignment cost which should incorporate appearance information unique to the

detected instances. Thus, addressing the final research question: How to adapt the assignment
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cost using data collected at deployment?

The core contribution of this chapter is a novel visual affinity model which approximates
the probability that a pair of detections represent the same object. This model uses a logistic
regression classifier which takes a pair of features representing two detections and outputs
the likelihood of both detections belonging to the same object instance. In contrast to prior
classification based approaches to tracking [Bewley et al., 2014, Kalal et al., [2012], here a
single classifier learns a pairwise assignment cost as opposed to appearance models tied to
specific instances. Additionally, by focusing on the assignment cost, optimal association across
video frames can be achieved using traditional methods such as the Hungarian algorithm [Kuhn,
19535]]. Finally, this framework naturally extends to handling previously unobserved instances

as the visual affinity model applies to all pairs of detections.

The remainder of this chapter consists of the paper entitled: “ALEXxTRAC: Affinity Learning
by Exploring Temporal Reinforcement within Association Chains” which was presented in
2016 at the International Conference of Robotics and Automation. This paper presents the
pairwise affinity model and also includes a method for self-supervision which improves the
affinity model with training pairs gathered during deployment. Furthermore, the temporal
history of tracked objects are explored for finding challenging matching pairs for training
the affinity model to be robust to high variation in visual appearance. The results show that
this affinity model accurately estimates an assignment cost for use in a tracking framework as

demonstrated on a standard tracking benchmark.



QUT

RESEARCH STUDENTS CENTRE
Examination Enquiries: 07 3138 1839
Email: research.examination@qut.edu.au

Statement of Contribution of Co-Authors for
Thesis by Published Paper

The following is the format for the required declaration provided at the start of any thesis chapter

which includes a co-authored publication.

The authors listed below have certified* that:

1. they meet the criteria for authorship in that they have participated in the conception, execution, or
interpretation, of at least that part of the publication in their field of expertise;

2. they take public responsibility for their part of the publication, except for the responsible author who
accepts overall responsibility for the publication;

there are no other authors of the publication according to these criteria;

potential conflicts of interest have been disclosed to (a) granting bodies, (b) the editor or publisher of
journals or other publications, and (c) the head of the responsible academic unit, and

5. they agree to the use of the publication in the student’s thesis and its publication on the QUT ePrints
database consistent with any limitations set by publisher requirements.

In the case of this chapter:

Publication title and date of publication or status:
“ALEXTRAC: Affinity Learning by Exploring Temporal Reinforcement within Association Chains™ (to appear May,

2016)

Contributor

Statement of contribution

Alex Bewley

Boid

—

8" April 2016

Wrote the manuscript, designed and conducted experiments and
performed data analysis

Lionel Ott

Provided input into experimental design, scope of paper and
proofreading/editing

Fabio Ramos

Provided input into experimental design, scope of paper and
proofreading/editing

Ben Upcroft

Provided input into experimental design, scope of paper and
proofreading/editing

Principal Supervisor Confirmation

| have sighted email or other co7ondence from all Co-authors confirming their certifying authorship.

A Kyl /e

Ben Upcroft
Name Signature Date
RSC, Level 4, 88 Musk Ave, Kelvin Grove Qld 4059 Page 1 of 1

Current @ 8/04/2016

CRICOS No. 00213)



ALEXTRAC: Affinity Learning by Exploring Temporal Reinforcement
within Association Chains

Alex Bewley!, Lionel Ott?, Fabio Ramos? and Ben Upcroft!

Abstract— This paper presents a self-supervised approach for
learning to associate object detections in a video sequence as
often required in tracking-by-detection systems. In this paper
we focus on learning an affinity model to estimate the data
association cost, which can adapt to different situations by
exploiting the sequential nature of video data. We also propose
a framework for gathering additional training samples at test
time with high variation in visual appearance, naturally inher-
ent in large temporal windows. Reinforcing the model with these
difficult samples greatly improves the affinity model compared
to standard similarity measures such as cosine similarity. We
experimentally demonstrate the efficacy of the resulting affinity
model on several multiple object tracking (MOT) benchmark
sequences. Using the affinity model alone places this approach
in the top 25 state-of-the-art trackers with an average rank of
21.3 across 11 test sequences and an overall multiple object
tracking accuracy (MOTA) of 17%. This is considerable as
our simple approach only uses the appearance of the detected
regions in contrast to other techniques with global optimisation
or complex motion models.

I. INTRODUCTION

This paper presents the design and implementation of a
self-supervised framework to solve the data association com-
ponent for tracking-by-detection. In tracking-by-detection, a
low level object detector typically operates independently
of the high level data association. This independence offers
several benefits including: robustness to drift as it does not
rely on state information, accommodates a changing number
of objects in the scene, and implicit recovery from detection
failure. To perform the data association most approaches rely
on position information and incorporate motion models [1],
[2] where hand crafted appearance features, such as colour
histograms are only used to resolve ambiguous situations
[31-[5].

While the tracking-by-detection problem has been inves-
tigated with various formulations, little attention has been
invested into improving the appearance similarity measure,
commonly used for quantifying the data association cost.
Our approach addresses this gap by actively modelling the
pairwise similarity between detections with a probabilistic
classifier, referred to as the affinity model. The output of
this model can be inserted into any tracking-by-detection
framework to improve data association in any arbitrary
environment.

We demonstrate that the temporal structure of a video
sequence can be explored to gather training samples to

LA. Bewley and B. Upcroft are with the Queensland University of
Technology (QUT) alex.bewley@hdr.qut.edu.au

2L. Ott and F. Ramos are with the School of Information Technologies,
The University of Sydney, Australia

Fig. 1. An illustration of an association chain showing that while the
frame-to-frame affinities are strong, the direct affinity over longer temporal
windows are affected by viewpoint change and background clutter. Warmer
colours denote stronger affinity.

reinforce the proposed affinity model. For example, Fig. 1
illustrates an association chain where the frame-to-frame
affinities are appropriately high and can be used to identify
a difficult matching pair with a large temporal separation. To
gather reliable matching and non-matching samples, we rely
on two basic constraints for exploiting the structure of video
data. Firstly, an object should have higher visual affinity to
itself than other objects over short temporal durations, and
secondly, co-existing and non overlapping detections cannot
represent the same object, known as mutual exclusion. These
constraints provide a valuable utility in governing the self-
supervision, particularly in preventing drift, to facilitate life
long learning.

Our design is simple and practical as it can learn at test
time without labels, automatically adapting to new visual
appearances. Additionally, fewer parameters are required, in
contrast to conventional motion model approaches. Finally,
this purely appearance based affinity model is complimentary
to other approaches relying on object dynamics such as [6]
or approaches that incorporate an appearance based cost in a
global optimisation [7]. The key contributions of this paper
are as follows:

« modelling visual affinity with a probabilistic classifier,

o gathering matching examples with high variance by
exploring association chains,

e use of co-existing detections as a source of non-
matching examples,

« use of a purely appearance based data association cost,

« affinity model reinforcement without explicit labelling.



This paper is organised as follows: In the next section, we
position the proposed approach among existing works. An
overview of the proposed method is given in section III. In
section IV, we demonstrate the performance of the proposed
method before a conclusion and an outlook to future work
is given in section V.

II. RELATED WORK

Here, we review techniques incorporating visual appear-
ance for multiple object tracking (MOT) with a strong focus
on techniques that include a learning component or rely
on affinity measures. In a general sense, many techniques
associate detections between frames by utilising features
extracted from each frame to measure and compare the
strength of all potential matches [1], [2], [8], [9]. Selecting
among the candidate matches can either be performed in a
greedy (winner-take-all) approach [8], [9] or by formulating
a bipartite graph [1], [2] which can be solved optimally [10].
These approaches all require a measure of affinity between
two candidate detections but have mostly only considered
fixed affinity measures such as the intersection kernel [7],
[11] or Kullback-Leibler distance [5] between two colour
histograms or normalised cross correlation between patches
[2].

The focus of this work is to learn an affinity measure
which is optimised for the task of visual tracking, and which
can complement the above matching and graph optimisation
approaches. This approach is also related to the structural
SVM approach, originally used for supervised clustering
[12]. Kim et al. [13] use implicit spatial-temporal structure
of video based tracking by employing a structural SVM to
predict the optimal matching as formulated in a bipartite
graph structure.

Another approach is to cast data association into a ranking
problem where similar objects should be ranked higher over
dissimilar objects [14]. Soleraet et al. [5] propose a method
based on the Latent Structual SVM to partition a scene and
learn which input features are most important in a divide
and conquer fashion. While they use colour histograms in
their experiments, their learning approach can adapt to any
set of provided features. However, the divide step of their
approach is based on spatial distance limiting their state-of-
the-art performance to only static cameras.

More recently, Choi et al. [15] learnt an affinity model to
measure if two detections correspond where the input is a set
of low level feature trajectories, requiring that optical flow
must first be computed. Probably the most similar work to
ours is that of Bae and Yoon [16] which sequentially grows
tracklets computing confidence from multiple sources. They
learn to associate detections to tracklets using incremental
discriminative learning analysis on features composed of
both appearance and motion cues. Our method differs from
theirs as we do not use motion information and our affinity
model estimates a universal pairwise affinity measure while
theirs treats each tracklet as a separate class.

In collecting training samples from test data we make use
of the mutual exclusion constraint as a hard assumption in

self-supervision. The exclusion principle was first introduced
by [17] for the purpose of disambiguating two intersecting
tracks. Similarly, [18] enforced the exclusion property at both
the detection and trajectory levels using penalty terms within
a conditional random field framework, however their work
only considered the position of the detections. Position based
exclusion methods are generally combined with other cues
including motion and appearance [7] to become competitive.
This work extends the notion of exclusion from these earlier
works to reinforce the appearance affinity model to coher-
ently distinguish multiple detections when collecting samples
for training.

III. PROPOSED METHOD
A. Overview

The input to our system is a set of detections for each
frame in a sequence. Although our approach is agnostic to
the type of detector, we require that a description of the visual
appearance is supplied for each detection. Convolutional
network features are used as descriptors since they have
been found to successfully capture visual similarity in related
fields such as image retrieval [19] and clustering [20]. Addi-
tionally, when a convolutional network is used for the prior
detection step (e.g. [21]), computing such descriptors comes
for free as the computation is performed in the detection step.
While any sufficient descriptor could be used to describe
appearance, a detailed comparison with different descriptor
types is beyond the scope of this paper.

Following the lines of [1], [2], [13], we formulate the
frame-to-frame matching process as a bipartite graph. This
strictly enforces a one-to-one matching among the detections
between adjacent frames. The Hungarian algorithm [10] (also
known as the Kuhn-Munkres method) is then used to find the
optimal assignment which maximises the total affinity across
all frame-to-frame matches. The overall performance of this
assignment boils down to the quality of the affinity measure
employed.

We concentrate on modelling the visual affinity and pro-
pose to formulate it as a binary classification problem. This
affinity model takes a pair of visual descriptors to produce
an output indicating whether the two samples match. The
affinity model’s output is then used as the matching score to
drive the Hungarian based matching to associate detections
to tracklets. In the remainder of this section we go into more
detail of our approach and describe how we train this model
in a self-supervised manner.

B. Pairwise Features

To discriminate a pair of candidate patches as either
matching or non-matching, a bidirectional feature is required.
For pragmatic reasons, we simply compute the absolute
difference between each element of the two patch descriptors
as follows:

dij = |d; — dj| 1),

where d; ; is a vector representing the pairwise descriptor
computed from the descriptors d; and d; extracted from



detection patches ¢ and j respectively. A comparison of
various descriptor extraction techniques and methods for
constructing pairwise feature vectors is beyond the scope
of this paper, so unless stated otherwise this is the pairwise
feature descriptor used throughout this work.

C. Affinity Metric

The affinity is modelled with a linear logistic regression
classifier [22] and trained on a set of candidate patch pairs.
Given a descriptor describing the appearance of each patch,
the goal is to learn which features within the descriptors
are most informative for discriminating between a pair of
matching and non-matching patches. The affinity model
approximates the probability that two patches match denoted
by:

1
14 exp—(67di;+b)

pa(m|di;) = (2),
where 6 denotes the weights corresponding to each feature
and b is a bias term. Both 6 and b are efficiently optimised
through Stochastic Gradient Descent (SGD) on a set of
matching and non-matching pairs.

D. Collecting Initial Pairs

As with any classification problem, a set of training
samples is required in order to train the affinity model. It
is desirable to have a means of collecting training samples
in any new environment for which this system is deployed
for life-long learning. In the contexts of visual tracking, we
can rely on the mutual exclusion constraint to gather non-
matching pairs from each frame. Similarly, an initial set
of positive pairs can be collected using optimal bipartite
matching across frames and conservatively keeping only
high confident matches. To achieve this however, an initial
measure of similarity is required.

The cosine similarity metric is used as an initial measure
of affinity since it possesses several desirable properties,
including:

o When features are constrained to positive spaces, the
cosine similarity is bounded to interval [0,1]. This
reflects the probabilistic output range for our desired
affinity model.

o Computation of cosine distance does not require expen-
sive modelling of the data distribution, i.e. Mahalanobis
distance.

o Considered to be more stable in higher dimensions than
other measures based on Minkowski distance.

Fig. 2 shows that the cosine similarity metric is a reason-
able measure as its maximal match is generally the same
object. However, as the cosine similarity rapidly decays
with increasing temporal windows we restrict this initial
set of positive matching to adjacent frames. This initial
set of samples is used to seed the affinity model with a
single round of SGD. Next, we describe how these frame-
to-frame associations are used to learn an affinity measure
for estimating the matching likelihood over multiple frames.
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Fig. 2. A comparison between cosine similarity and the learnt affinity
model after three iterations on a set of 200 tracklet patches of pedestrians
taken from the KITTI benchmark [23]. The lower triangle represents
the ground truth matching where the detections have been grouped and
reordered such that each red block represents an instance of an object. The
upper triangles show the affinity estimate (top row) and chained affinity
(bottom row). This comparison demonstrates that having a near binary
estimate is important in long association chains. Best viewed in colour.

E. Association Chains

Using the initial affinity model as a similarity measure for
frame-to-frame associations, we seek to extend its capability
to match more challenging examples with higher variation
as observed over larger temporal windows. To achieve this,
we explore the frame-to-frame associations to incrementally
grow a chain and select pairs along this chain to reinforce
the affinity model. This process is provided in Algorithm 1
with key points described in this section.

Using the probability chain rule, the probability that two
non-temporally-adjacent detections represent the same object
can be modelled as:

Jj—1

pe(mld; ;) = [ [ pa(mldii)- (3)

t=1

This chained affinity essentially captures the joint proba-
bility that all associated detections in the tracklet segment
[i,7] belong to the same object. As the temporal duration
between the two detections ¢ and j increases, there is a
monotonic decrease in the chained affinity, accurately cap-
turing the growing uncertainty. Put another way, the chained
affinity has an upper bound which is less than the minimum
link affinity along the chain. This is important in identifying
the temporal boundary of an objects existence as shown in
Fig. 2.

By exploring the tracklet history, errors in the direct
affinity measure can be compared to the chained affinity
and used to collect additional positive training samples over



Fig. 3. Three tracklets where colour denotes object identity. By exploring
the tracklet, detection ¢ in the current frame can be linked to detection j
several frames before by using the chained affinity to create a new positive
sample pair (z, ). Similarly, since 7 and k share the same frame we can
also gather a non-matching pair (i, k).

larger temporal windows. To prevent learning from poten-
tially incorrect matches, only confident positive pairs are
collected as measured by comparing the chained affinity to a
threshold ¢ (line 6 of Algorithm 1). These samples are used
to reinforce the affinity model through incremental learning
— causing the frame-to-frame direct affinities to approach 1 —
resulting in a reduction in the decay of the chained affinity —
and ultimately increasing the chain for gathering additional
samples.

Consistently adding new examples of positive matches
from the temporal history can lead to an imbalance of the
negative to positive ratio. The common remedy of increasing
the weighting ratio between the negative and positive classes
can be limiting as it is often difficult to estimate the ratio
ahead of time. To alleviate this dissension, we build off the
association chain affinity introduced in the last section to also
find additional non-matching examples over longer temporal
windows. The association chains are also used to collect
additional negative samples to supplement the non-matching
examples of the current frame collected by using the mutual
exclusion constraint.

Given that we have formed a tracklet [z, j] with high confi-
dence, other non-overlapping detections in the same distant
frame can also be used as negative match examples. The
intuition of this is aligned with the notion of self-similarity,
i.e. as the visual appearance of a single object changes over
time so does the relative appearance of that object with
respect to other objects. For example, Fig. 3 shows a matched
tracklet chain [i,j] where the older detection j shares the
same frame as detection k. Given that ¢ matched j with a
confidence of p.(m|d;;), and that j # k due to mutual
exclusion, we expect that the direct affinity between ¢ and &
should be low (see lines 14 and 15). This places an upper
limit on the affinity between ¢ and another non-overlapping
detection k from the same frame as j. Errors from the affinity
model which violate this constraint are used as non-matching
samples during the incremental updating of the model.

FE. Classifier Balance

Self-supervised frameworks are prone to drift, particularly
where the model learnt is the same model used to gather
examples. The intuition behind the mutual exclusion and

Algorithm 1 Exploring tracklets for difficult samples

Input: d; > descriptor of current detection %

Input: t;,_; > tracklet list matched to detection ¢

Input: fj() > Eqn. 2

Output: X, m,w > Training inputs, outputs and weights
1: function (d;,t;_1, fo)

2 De = fa(di,t,;)

3: for j = reverse_iterate(t;—1) do
4: Pa = fa(di ;)

5: Pe = Pe * fe(djfl,j) > qul 3
6: if p.(i,7) < 0 then

7: break

8: if p. > p, then

9: X +— di,j

10: m <+ 1

11 W <+ (pe — Pa)

12: for each k € frame(j) do

13: if overlap(j, k) = False then
14: P =1— fo(dir)

15: if p. > p, then

16: X <—dip

17: m<+ 0

18: W < (pe — pn)

return X, m, w

bipartite matching constraints offer some robustness to drift
by selectively rejecting potential pairs which violate these
constraints. However, the bipartite property assumes a one-
to-one matching which does not factor in situations where
objects enter or leave the scene and/or the detector misses
or introduces false positives. These situations are actively
handled by further rejecting matches if their affinity is
less than 50%. If the affinity model is incorrect with this
prediction, i.e. the pair are truly matched then this small
failure can lead to severe consequences. This situation occurs
if the model becomes negatively biased, which generates a
ripple effect where the tracklet is broken, thus limiting the
positive feedback effect of the association chain reinforce-
ment causing the model to become further negatively biased.

Not all errors are created equally!

The key to combating this bias problem is in the placement
of importance for the samples collected. Lines 11 and 18
of Algorithm 1 weight the positive and negative samples
respectively. Both of these were vetted by first checking if
the affinity model created an error by comparison with the
chained affinity. This weighting of samples by the amount of
error creates a balanced interplay between the positive and
negative collection of samples, keeping the model neutral.

Finally, the samples collected over the test sequence are
then used to retrain the logistic regression classifier. This
improves the affinity model and ultimately enhances the per-
formance of the Hungarian algorithm in assigning the frame-
to-frame associations during the tracklet building process.



IV. EXPERIMENTS

The effect of this learnt affinity method is evaluated in the
context of tracking-by-detection on various MOT benchmark
sequences described in [24]. This MOT benchmark provides
a unified framework for evaluating different multiple object
trackers over a variety of sequences filmed from different
viewpoints, with different lighting conditions, and different
levels of target density.

In this experiment, we used the supplied detections pro-
vided with the dataset which where generated using the ag-
gregated channel features (ACF) detector [25]. From each de-
tection bounding box, we use the deep 16-layer convolutional
network of [26] as a descriptor extractor. Each detection
patch is resized to 224 x 224 and propagated forward through
13 convolutional layers and one fully-connected layer to
produce a 4096 dimensional feature to represent the visual
descriptor.

Both the Hungarian matching and logistic regression
model implementation were from the scikit-learn toolkit [27].
Our unoptimised, single threaded python implementation of
this tracker runs at 3.7 frames per second on a 2.5 GHz
intel "M 7.

Table I shows the performance of the proposed method
using the widely accepted CLEAR MOT metrics [28] eval-
uvated with a 0.5 intersection over union threshold. The
Multiple Object Tracking Accuracy (MOTA) combines all
false positives, false negatives, and identity switches into
a single number, and Multiple Object Tracking Precision
(MOTP) measures the average distance between the ground
truth and the tracker output. For both the MOTA and MOTP a
higher value represents better performance. The ID switches
indicate the total number of times a true object has switched
identities according to the tracker output following the strict
definition in [14]. Other metrics listed are the False Alarms
per Frame (FAF), Mostly Tracked (MT) and Mostly Lost
(ML) metrics along with the number of False Positives (FP)
and False Negatives (FN). The number of Ground Truth
object (GT) is also shown for each sequence.

The results are split into training and test sequences. It is
important to note that the ground truth labels were not used
within the self-supervised procedure. Decisions on selecting
hyper-parameters such as the minimum confidence threshold
¢ and logistic regression regularisation were selected to in-
crease the MOTA on these training sequences. The minimum
confidence threshold § = 0.9 was found to give best results
on the training sequences.

We also include the results of other tracking methods
discussed in Section II. Namely a general tracking-by-
detection method that uses the Hungarian algorithm TBD
[2] and two affinity learning based methods: TC_ODAL
[16], LDCT [5]. When considering the key MOTA score our
approach performs quite favourably to the related method
affinity methods indicating that our self-supervised approach
is able to correctly adapt to the data observed. However, it
is important to note that several of these sequences involve
a dynamic camera. This heavily impacts the overall MOTA

score for LDCT [5] which focuses primarily on applications
with a static camera. Our method also achieves comparable
results to a purely motion based technique [6], indicating
that appearance is adequate in object tracking and could be
treated as an independent low level tracker if combined with
a motion based tracker.

Qualitative results are shown in Fig. 5. The vertical lines
indicate an ID switch. With closer inspection (see Fig. 4),
many of these are caused by a duplicate detection or false
positive in a frame adjacent to a object entering of leaving
the scene. Since this technique only matches detections in
adjacent frames using visual appearance, ID switches and
fragmentation errors are to be expected. Nevertheless, given
the large number of tracklets and frames, the affinity model
produces accuracy data association in the majority of frames.
Furthermore, the white circles in Fig. 5, show detections
which were not matched to either the previous or next
adjacent frames. In the PETS sequence, it is obvious that
these detections correspond to a stationary object which are
actually false positives generated by the low level detector.
This indicates that temporal inconsistency could be used as a
cue for false positive detections which are implicitly handled
within this technique as they are not matched to any object
tracklet. A clear downside however is the amount of track
fragmentation. This is caused by the frames where an object
is miss-detected or when two detections cover an object
creating a new tracklet. These limitations indicate that this
method could be further improved if combined with motion
based models.

.i“ 1
/7 111

Fig. 4. Frames 74, 77, and 80 of the KITTI-17 sequence showing a false
positive in the top frame getting reassigned to an actual pedestrian emerging
from behind a foreground pedestrian. Best viewed in colour.



TABLE 1
PERFORMANCE OF THE PROPOSED APPROACH ON MOT BENCHMARK SEQUENCES.

| MOTAT | MOTPt | FAF| | GT | MTt | ML, | FP, | FN| | IDsw| | Frag|

TUD-Stadtmitte 53.8 65.6 0.90% 10 | 50.0% | 0.0% 146 348 40 33
Train Sequences TUD-Campus 35.7 70.6 0.34% 8 12.5% | 12.5% 51 157 23 25
PETS09-S2L1 67.7 71.4 0.87% 19 | 789% | 0.0% 648 603 193 152
ETH-Bahnhof 29.3 73.4 1.52% | 171 | 23.4% | 37.4% 1544 2121 165 208
ETH-Sunnyday 30.9 76.2 0.29% | 30 10.0% | 50.0% 118 1104 61 73
ETH-Pedcross2 7.9 71.3 0.17% | 133 | 0.0% | 85.0% 173 5543 54 78
ADL-Rundle-6 254 71.8 2.09% | 24 4.2% 8.3% 974 2590 174 160
ADL-Rundle-8 10.9 72.4 251% | 28 10.7% | 39.3% 1653 4213 178 187
KITTI-13 5.8 70.9 047% | 42 48% | 38.1% 327 355 36 29
KITTI-17 48.0 70.8 0.14% 9 0.0% 11.1% 44 292 19 21
Venice-2 13.3 72.6 381% | 26 11.5% | 192% | 2421 3591 177 164
Overall 24.5 72.1 1.43% | 500 | 14.6% | 45.6% | 8099 | 20917 1120 1130
TUD-Crossing 51.2 73.0 0.2% 13 15.4% | 15.4% 39 459 40 50
Test Sequences PETS09-S2L2 27.5 70.6 1.0% 42 0.0% | 262% 449 6153 385 359
ETH-Jelmoli 329 73.2 0.6% 45 13.3% | 28.9% 283 1334 86 98
ETH-Linthescher 15.4 74.1 0.1% 197 1.5% | 76.1% 94 7369 90 103
ETH-Crossing 19.6 74.7 0.1% 26 7.7% 65.4% 13 783 10 10
AVG-TownCentre 13.3 70.0 1.0% | 226 1.3% | 61.1% 442 5637 118 152
ADL-Rundle-1 5.1 71.3 7.0% 32 15.6% | 21.9% | 3503 5010 321 306
ADL-Rundle-3 18.1 71.8 3.9% 44 6.8% | 22.7% | 2420 5523 385 261
KITTI-16 13.9 72.1 0.5% 17 0.0% | 23.5% 105 1279 80 73
KITTI-19 13.5 66.5 1.1% 62 6.5% | 30.6% 1128 3266 227 326
Venice-1 12.5 71.9 1.7% 17 0.0% | 41.2% 757 3120 117 134
*Proposed method Overall 17.0 71.2 1.6 % 721 3.9% 52.4% 9233 39933 1859 1872
°TC_ODAL [16] Overall 15.1 70.5 22% | 721 32% | 55.8% | 12970 | 38538 637 1716
°LDCT [5] Overall 4.7 71.7 24% | 721 | 11.4% | 32.5% | 14066 | 32156 12348 2918
°TBD [2] Overall 15.9 70.9 2.6 721 6.4% | 47.9% | 14943 | 34777 1939 1963
TSMOT [6] Overall 18.2 71.2 1.5% | 721 28% | 54.8% | 8780 | 40310 1148 2132

* Purely appearance based
© Position and appearance based
T Purely motion based

PETS09-S2L1 Tracklets

KITTI-17 Tracklets
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Fig. 5. Spatial-temporal representation of the tracklets discovered in a low target density setting (left) and high density setting (right). It is important
to note that frame-to-frame matching was performed using appearance affinity making it robust to complex dynamics as observed in the PETS09-S2L1
sequence. Near vertical lines indicate an ID switch. Best viewed in colour.



V. CONCLUSION

In this paper we have proposed a method to learn a visual
appearance affinity model for the problem of associating
object detections across video frames. The proposed method
exploits the sequential nature of video sequences to collect
additional training data as new frames arrive and explore
existing associations for additional training pairs. We show
that this affinity model can efficiently be updated from
the test data without explicit labelling enabling life-long
learning. Experimental evaluation shows that this appearance
based affinity model is capable of operating as the primary
association score for multiple object tracking. In future work,
we intend on extending this affinity model to perform online
tracking and learning. Additionally, incorporating motion
information and tracklet merging strategies offer potential
avenues for reducing track fragmentation.
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Chapter 6

Discussion

Through a series of published works, this thesis has presented both detection and tracking
techniques which are capable of identifying novel objects, background distractors and learn
to better associate detections over time. This chapter summarises its contributions, discusses

the research outcomes and proposes avenues for future work.

6.1 Thesis Summary

This thesis has presented a series of methodologies for the detection and tracking of dynamic
objects that are capable of adapting to the target domain. Object detection has advanced
significantly due to recent developments in data driven approaches, particularly DCN|based ap-
proaches. However, much of this success relies on having extensive training examples specific
to the deployed environment. As it is often infeasible to collate such specific training sets ahead
of time, this thesis considers methods which are able to learn and adapt their models during
deployment. Two research questions around this issue were proposed where the first focuses on
objects: How to discover objects which may have appearance characteristics unknown by the
detector? While the second focuses on the background: How to adapt an appearance based de-
tector for deployment in new and novel environments with different background characteristics

to the training data?

The notion of learning during deployment was further extended to visual object tracking.
While some prior tracking methods adapted their models online, they were restricted to single

object tracking. Other tracking methods based on the assignment problem were identified as
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better suited for the online tracking of multiple targets. However, these assignment based
methods employed fixed similarity comparisons and are not able to adapt to the characteristics
of the detected objects. This raised the final research question of this thesis: How to adapt the

assignment cost using data collected at deployment?

Methodologies addressing each of the research questions were presented through a set of

published papers and their contributions are summarised as follows.

6.1.1 Unsupervised Discovery of Novel Objects

Chapter |3| of this thesis is composed of a paper presented at the 2014 IEEE International Con-
ference on Robotic Automation (ICRA) in Hong Kong. This paper presented a motion based
detector which focuses on distinguishing between the static environment and multiple moving
objects with unknown visual appearance. Building upon the prior work of |Guizilint and Ramos
[2013]], this thesis explores the use of geometric constraints to identify the static background
while introducing motion clustering to filter and partition dynamic points corresponding to the
objects moving in the scene. By focusing on motion, the proposed framework makes no prior
assumption on object appearance enabling it to identify any type of moving object compared to

appearance based techniques that require manually annotated training samples.

The outcomes of motion based detection are two fold: first as a means of object detection
without prior knowledge of appearance and second as a method for gathering positive training
examples online. Both of these outcomes were demonstrated by using the discovered motion
clusters to train an appearance based classifier without any pretraining. In this framework, a
multi-class classifier was trained where the input is represented as the pixel position and colour
while the output indicates either the object identity or background. For each frame, the output
of the classifier was compared with the detected motion clusters where the classifier maintained
appearance knowledge of known object identities and the motion detector would discover and
create new object identities. Additionally, since each object is represented as a cluster of points,
classifier errors on individual points were also used to gradually update the appearance model

to better segment the moving objects from the background over time.

In Chapter[3] objects were represented as a collection of points for both the motion clustering
and the appearance based classifier. This allows the classifier to rapidly adapt to new objects

as multiple training points are attained from each object, even from the first frame the object
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was discovered. Additionally, as most objects contain a mixture of colours, this complexity is
naturally handled by the cluster based sampling. However, these benefits came at the cost of
managing a large and varying amount of points in the k-NN classifier, prompting the use of

whole object based representations and a classifier in Chapters {] and [5

6.1.2 Background Models for Adapting Detectors

In Chapter[4] a state-of-the-art[DCN|based detector, pretrained on ImageNet data was applied in
a surface mining environment. This scenario highlighted the need for adapting to the deployed
environment as the pretrained detector performed poorly. While motion was shown to identify
detector deficiencies during deployment, only miss detections are discovered while false detec-
tions persist. To address this issue, Chapter @ introduced background modelling as an approach

for adapting a pretrained generic object detector to novel and unstructured environments.

The background modelling techniques proposed in Chapter 4| were designed to operate
alongside a pretrained detector to combine both specific and generic appearance models.
In contrast to directly retraining the detector, this approach only requires background data which
can be collected with minimal manual annotation. Furthermore, a method was presented for
gathering vast amounts of background patches which are novel to the detector for learning the
background model. This allowed the background model to focus precisely on appearances that

are likely to confuse the pretrained detector and ultimately improve the system’s precision.

Chapter {4 contains two articles describing two different variants of the background model.
The first variant was presented at the International Conference on Field and Service Robotics
(FSR), 2015 in Toronto. This model clustered image patches to represent different types of
potentially distracting background objects. In this earlier work, the background model was
used to validate and suppress false detections made by the [DCN]if detection was similar to a
background cluster. This was shown to significantly improve detection precision with only a

minor drop in recall.

The second variant proposed in Chapter 4] replaces the suppression stage with a probabilistic
fusion approach. This led to both better precision and recall as it capitalises on the information
provided by both the detector and background model. Furthermore, the background model itself
was modified to estimate the probability a detection belongs to background by considering the

similarity to all background clusters jointly as opposed to only the nearest cluster. A paper
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describing these extensions is included in Chapter |4| which is also published in the Journal of

Field Robotics (JFR).

Another facet of the background models is the reuse of an intermediate layer response
to describe the visual appearance of an image region. Moreover, they are also practical since
they are precomputed for the base detector. Compared to the simple point colour features used
in Chapter [3] the DCN] features better characterise the whole object appearance for the detector

while also providing adequate clusters for the background model.

Given the small amount of labelled mining images available, the introduction of a back-
ground model was instrumental in improving the detector performance. In particular, when
discriminating people and mine vehicles from the novel background, the performance of the
joint cosine similarity variant exceeded both the pretrained and a retrained detector.
Finally, these results were further improved by fusing the probabilistic estimates of the high
precision joint cosine background model with the high recall retrained[DCN] This fused method
not only improved the F1 detection performance by 14% but also allowed novel mining specific

vehicles to be detected despite being severely under represented in the training data.

Overall the fused detection system demonstrated superior performance over the pretrained
[DCN]detector as it was able to exploit site specific appearances stored in the background model.
The only exception to this was in a single test where the system was deployed in part of a mine-
site containing store yard items and a processing plant. In these environments the background
models underperformed the pretrained [DCN|since only day-time images from inside the pit and
haul roads were used in the deployment specific training. This implies that the image reservoir
used to form the background model must be extended with similar images should the detector

be required to operate in such environments.

6.1.3 Learning an Improved Appearance Model for Object Tracking

The final outcome of this thesis is an appearance model suitable for tracking multiple objects.
Chapter [5 revisited the idea of adapting an appearance based classifier for tracking but instead
of learning a classifier to predict individual identities (as performed in Chapter [3), the focus
is given to associating detections across frames in a tracking-by-detection framework. This
decoupled approach offered multiple benefits as the detector capitalises on the holistic object

representations (used in Chapter [d)) while the tracker learns to better distinguish between object
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instances.

The main contribution of the proposed tracking approach presented is the introduction of
a probabilistic classifier based affinity model to estimate if a pair of detections represent the
same object. A key benefit of using a classifier is the ability to update its parameters online.
Compared to fixed similarity measures, this approach is able to improve the assignments made

during deployment, ultimately leading to better tracking performance.

Another contribution of Chapter [5]is a self-supervised framework which exploits the se-
quential nature of video sequences to continuously collect training pairs as new frames arrive.
Furthermore, this framework included a form of introspection where existing frame-to-frame
associations are explored over larger temporal windows to find difficult pairs indicated by a
disagreement between the affinity estimate and the chained probability. Updating the model
with these difficult to associate pairs strengthened the systems robustness to common variations

in an object’s appearance.

The corresponding paper [Bewley et al., 2016b] describing this learning based object tracker
was presented at the International Conference on Robotics and Automation (ICRA) 2016 in
Stockholm. This paper included an extensive evaluation using several benchmark se-
quences showing that the proposed appearance based tracking framework is comparable to other
state-of-the-art based trackers which incorporate a myriad of position, motion and appearance
cues. These experiments showed that the proposed appearance based affinity model is capable
of operating as the primary association score for Moreover, the self-supervised nature
of this approach allows it to improve its association over time by learning the scene specific
object assignment cost without explicit supervision. Thus addressing the third and final research

question: How to adapt the assignment cost using data collected at deployment?

6.2 Future Work

Each of the presented works in this thesis suggested potential avenues for continued develop-
ment of each system. The following lists a number of possible future directions taking into

account all contributions of this thesis.
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6.2.1 Motion Clustering in 3D

This thesis has demonstrated that motion clustering is able to detect multiple moving objects
without any prior knowledge of their appearance, image location or shape from a monocular
sequence. While this technique is capable of handling a dynamic camera, ambiguities stemming
from the monocular geometry causes the system not to detect objects that move in a parallel
direction to the camera. Specifically, without knowledge of the depth to the object or the object’s

size, the apparent motion in the image cannot be disentangled from the camera motion.

Adding a second camera in a stereo configuration allows for the object depth to be esti-
mated, thus facilitating the identification of objects moving parallel to the camera. However,
as the accuracy of stereo depth estimation degrades rapidly with distance to the object, direct
motion clustering on noisy displaced 3D points remain challenging. This could be alleviated by
performing the point feature matching by alternating viewpoints each time step. If performed
simultaneously with both cameras, i.e. creating virtual camera motion in both directions, the

parallel motion ambiguity could be eliminated.

6.2.2 Better Features

In this work, motion clustering was presented as a means to identify previously unknown
moving objects and to update a classifier to re-identify the objects moving in the next frame.
However, simple colour and position features used in the classifier limited this solution to only
learning what colours belonged where, without generalising to long term visual cues such as
the shape of the objects found. While simple colour features worked well in urban datasets,
when applied to a mining environment where vehicles frequently become dirty, such features
lacked the information to segment the vehicles from the background. The features used
in Chapters 4| and [5] are better suited for this environment as they implicitly encode higher level
information such as shape. Given the tremendous and rapid improvement in architectures
and training techniques, it is anticipated that even better features could be learnt for the specific
environment along with robustness to various environment conditions. This could be naively
achieved through employment of a state-of-the-art [DCN] architecture with large amounts of
training data specific to the target environment or via a more data-efficient form of domain
adaptation. Particularly, when there is insufficient training data in the target domain this can be

framed as an unsupervised domain adaptation problem.
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While unsupervised domain adaptation is an unresolved problem, many recently developed
techniques for training neural networks to act as adversaries to one another [Goodfellow et al.,
2014]] offer a mechanism to transfer a learn model to new domains without extensive labels.
One way this could be implemented is by simultaneously training a [DCN] for the primary
detection task while also training it to fool a discriminator. This discriminator is trained with the
objective of selecting if the input image came from the labelled source domain (e.g. ImageNet)
or the unlabelled target domain (e.g. mine-site data) rendering it inherently independent of class
labels in the target domain. Through the classification objective in the primary task the network
maintains its ability to distinguish classes (e.g. vehicles from trees) but also learns to remove
domain specific noise in the internal DCN|representation. Furthermore, this approach could be
extended to different environmental and lighting conditions to improve robustness by switching

the domains to condition types (e.g. rain, night or dusty).

6.2.3 Adaptive Background Model

A method for learning a novel background model was demonstrated in a mine site scenario
where the background is considerably different in visual appearance from the typical images
used in benchmark datasets such as ImageNet. This presented model required minimal super-
vision in the form of verifying that no objects of interest exist in video segments. Mitigating
this requirement would further aid the deployment of this system in different environments.
Additionally, if the background model could be continuously updated online, this would likely

lead to improved detection across different environmental conditions.

Taking a system engineering approach, the background model could be efficiently learnt by
exploiting the property that not one but a fleet of haul trucks repeatedly traverse the same route,

experiencing the same distractors. These distractors could be identified through reconciliation

with other on-board sensors such as [Global Positioning System (GPS)| and [Radio Frequency|

[Identification (RFID)l Additionally, if just one vehicle is equipped with additional sensors such

as LiDAR or RaDAR, the geometry and location of these distractors could be verified and
communicated to other vehicles traversing the same route. Alternatively, image only based
[StM] techniques can also make use of the geometric shape and appearance of the distractors
gathered by frequent revisits to the same location, as recently shown by [Hawke et al.| [2015]

2017]].
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6.2.4 Validated Learning after Tracking

The tracking component presented in Chapter [5] focused heavily on the data association step
for the purpose of linking detections across adjacent frames. Ideally objects should be re-
identified after a period of miss detection or temporary occlusion. Despite using example
associations spanning multiple frames to train the presented affinity model, it was unable to
associate detections with a dramatic change in appearance which commonly coincides with
miss detections and occlusions. This often resulted in fragmented tracks as the non-associated

detections would then be used to form new tracklets.

This limitation could be surmised by the self-supervised training procedure and the fixed
features extracted from a pretrained network. The self-supervision required a continuous stream
of positive matching detections where mining examples with significant appearance change
is difficult as the chaining procedure is dependant on the frame-to-frame associations. Addi-
tionally, the feature extraction network was trained for classification and fixed for the task of
tracking. It is envisioned that by training the network with additional supervision for the task of
re-identification, it would capture more instance specific detail (opposed to semantic details for
classification) facilitating better associations in these difficult associations and thus also improv-
ing the self-supervision process. This additional supervision could come from supplementing
the training dataset with additional data from multiple cameras or by exhaustively checking past

tracks for potential matches and requesting validation through a form of active learning.

Furthermore, once distant tracklets have been associated, frames separating the fragmented
tracklets could be searched for miss detections. This would require that the object trajectory is
interpolated to predict the missing object location, then the learnt affinity model could be used
to validate if the object was visible. Steps towards this extension have been undertaken in other
related work [Bewley et al.l [2016a] by considering motion estimation techniques to predict
object location. Future work in this direction should also consider methods for combining
evidence from tracklets on either side of the missing frame to explain the cause for the miss

detection before using the example to update the detector model.
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6.2.5 Extending with New Network Architectures and More Data

The work in the Chapter i and Chapter [5|made use of recent developments of deep learning as
a generic tool for feature extraction and object recognition. Given the rapid pace of research
in that field, it is expected that further advancements in deep learning and new network ar-
chitectures would also improve the methods presented in this dissertation. In parallel to the
work completed in this thesis, the detector used has undergone two revised network
architectures |Girshick [2015], Ren et al.|[2015]] each achieving both faster and better perfor-
mance on standard single frame detection benchmarks. Beyond better single frame recognition
performance it is also interesting to consider the potential of incorporating recurrent networks

(similar to [Ondruska and Posner, 2016]]) for predicting the future states of objects.

Finally, if extensive volumes of deployment specific training data was available, we could
expect further improvements for vision-based sensing in such environments. The analysis of
additional supervision in Chapter [5| highlighted the value of labelled data showing that modest
performance gains are achievable through additional labels and the magnitude of these gains
could potentially be extended further through further investment in labelled data. While the
methods presented in this thesis learn from mostly unlabelled data observed during deployment,
extensive trials under various environmental conditions and over multiple seasons would be

required in order to speculate how these techniques perform in the long term.

6.2.6 Environmental Conditions

Beyond naively adding more labelled training data, it is important to capture the diversity
of appearances expected during deployment. A significant concern with applying vision in
outdoor and industrial environments such as a mine site is that it needs to handle environmental
conditions including night, rain, dust, fog and snow. The effect of these adverse conditions
on a computer vision systems level of perception varies from: a change in the appearance (at
best), to a reduction in light where the objects are no longer visible (at worst). These effects
also apply to human vision which is arguably the main sensing modality for existing industrial
operations. As a result many industrial environments are controlled to enhance the visibility of

objects under such conditions by adding high-visibility colours, lights, and reflectors.

While administrative controls lessen the likelihood of losing visibility, the challenge remains
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with how to deal with the change in appearance. For example, the night-time sequence from the
mine site trial in Chapter 4] showed a slight reduction in detection performance since personnel
appear as horizontal white strips (see Figure 12 of Chapter[d)). This scenario is another example
of the training set being insufficient to cover the variation observed during deployment requiring
additional specific training data to detect these cases. To ease the burden of labelling data across
all seasons and conditions, the techniques suggested for extracting better features (Section
[6.2.2)) would also address the changes in environmental conditions. Namely, adversarial domain
adaptation could be used towards training a condition invariant feature encoder where labels are

only required for a subset of all expected conditions.

Finally, this work has only looked at enhancing detection and tracking using standard colour
cameras and there are obvious benefits to using a range of sensing modalities. Particularly, in
the extreme case where an object may not be visible to the camera but still visible to RADAR.
The fusion of multiple modalities along with extensive trials in adverse conditions would be
a suitable avenue for future work in further applying computer vision on mine sites and other

industrial environments.
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6.3 Conclusion

This thesis presented a vision-based detection and tracking system for environments where
there is a lack of scene structure and prior knowledge of object appearances is limited. To
achieve this, the focus of this thesis revolves around the ability of the sensing system to adapt
to different or unseen objects and novel background by learning at the time of deployment.
This problem was addressed on multiple fronts: detecting objects with unknown appearance,
robustness to deployment specific background distractors, and learning during deployment to
improve tracking performance. In working towards this, contributions were presented in three
corresponding areas, namely, unsupervised object discovery through motion clustering, adapt-
ing an appearance based object detector with a background model, and continuous affinity
self-supervised learning for object tracking. These contributions aid towards enabling the rapid
deployment of vision based detection and tracking in environments without requiring a large
set of training examples. It is expected that the work presented in this thesis will also aid in
facilitating future progression of vision based technologies by lessening the effort required to
adapt data driven detection to different environments. Through the research presented in this
thesis, it is hoped to inspire other researchers to consider applying computer vision beyond the

standard benchmarks where learning from the environment is essential.
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Appendix A

Problem Formulation

The problem of detection and tracking of multiple objects can be formulated within a
framework as follows: given a sequence of observations zg.; the states x; of m observable
objects can be inferred. This is illustrated using the graphical plate model notation in Figure
In this model the observations are the images captured which evolve over time based on
both the camera motion x* and that of independently moving targets within view of the camera.
The states x* and x° may encode the position, motion, shape or visual appearance of the scene

and objects respectively.

The detection component is responsible for detecting the number of objects and their lo-
cations, while tracking aims to associate each detection to the same object across frames.

However, the number of target objects m is usually unknown and is constantly changing over

time as objects enter and leave the [Field Of View (FOV) When combined with unknown object

dynamics and potential errors in the detection, estimating the state of each object becomes
challenging. Since this thesis focuses on vision based detection and tracking, features such as
shape and appearance can be informative to make robust data associations that are independent

of motion.
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o € Objects \ R\\‘\

A\

Figure A.1: The detection and tracking problem represented in the form of a graphical plate model. Note the
observations z (camera images) are jointly influenced by both the sensor state x° and the state of an arbitrary
number of individual moving objects x°. The transition of states for each moving object (including the sensor) is
modelled as a dynamic Bayesian network with first order Markov chain assumption.



Appendix B

Related Authored Publications

The following papers are included in this appendix as they are related to the works carried out

in the thesis but do not form part of the main contribution.

The first paper [Bewley and Upcroft,|2013]] presents an approach to nearest neighbour search
with a constant time complexity when provided with 3D point cloud data as generated by a
stereo-vision algorithm. This is demonstrated to speed up a classical clustering approach that
relies heavily on nearest neighbour searches. Despite the use of unsupervised clustering in this
paper, the main contribution is in the nearest neighbour search technique which requires 3D

(stereo) data which was not used in the later parts of this thesis.

The second paper [Bewley et al., 2016a] included in this appendix focuses on speed and
simplicity for multiple object tracking. It details a simple algorithm that employs classical
tracking techniques applied to visual tracking where objects are represented as a bounding box
in the image coordinate space. Since this paper does not employ any learning based techniques
nor does it address any of the research questions, it was omitted from the main part of this thesis.
However, it does provide useful insights to visual object tracking showing that advances made

in the appearance models used for object detection implicitly improves object tracking.
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Advantages of Exploiting Projection Structure for Segmenting Dense
3D Point Clouds

Alex Bewley and Ben Upcroft
Queensland University of Technology, Brisbane, Australia
{aj.bewley,ben.upcroft } @Qqut.edu.au

Abstract

Timely and comprehensive scene segmentation
is often a critical step for many high level
mobile robotic tasks. This paper examines
a projected area based neighbourhood lookup
approach with the motivation towards faster
unsupervised segmentation of dense 3D point
clouds. The proposed algorithm exploits the
projection geometry of a depth camera to
find nearest neighbours which is time inde-
pendent of the input data size. Points near
depth discontinuations are also detected to re-
inforce object boundaries in the clustering pro-
cess. The search method presented is evaluated
using both indoor and outdoor dense depth
images and demonstrates significant improve-
ments in speed and precision compared to the
commonly used Fast library for approximate
nearest neighbour (FLANN) [Muja and Lowe,
2009].

1 Introduction

Modern sensors such as time-of-flight cameras, Microsoft
Kinect, calibrated stereo cameras and high definition 3D
LIDAR provide rich depth information with rates of over
a million points per second. Timely and comprehensive
scene understanding through interpretation of this data
is critical to effective decision making in mobile robotic
applications. A common approach to scene understand-
ing is to subdivide sensor data into smaller meaningful
portions which can later be classified if the target ap-
plication requires. While segmentation is ubiquitous in
the computer vision and robotics communities, many ap-
proaches assume specific domain knowledge in the form
of model fitting or supervised learning. Unsupervised
methods such as spatial clustering utilise nearest neigh-
bour techniques to efficiently partition similar data into
groups which differ from other groups.

One of the biggest drawbacks of using spatial cluster-
ing in robotics has been the excessive computational load

Figure 1: Top: visual frame depicting the scene for the

reader’s convenience. Middle: dense depth map represen-
tation of scene as input to clustering algorithm (computed
using [Geiger et al., 2011]). Blue represents close points and
red is the maximum depth fixed at 150m. Bottom: Output
of spatial clustering algorithm where each colour denotes a
different cluster.

primarily due to nearest neighbour searching. While
considerable attention has been given to improving the
computational efficiency of nearest neighbour problems
[Elseberg et al., 2012, the overhead of preprocessing the
data into an organised structure often prohibits these
methods for online robotic perception problems. The
primary focus of efficient nearest neighbour searching
in these domains is to minimise both the query time
and storage complexity of high dimensional databases at
the cost of increased build time. As data is constantly
acquired in robotic applications, maintaining complex
data structures online induces a significant computa-
tional overhead.
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This paper takes an alternate approach for nearest
neighbour searching for robotic applications where the
domain is restricted to the Euclidean distance as a dis-
similarity metric in R? space. We exploit the 2.5D nature
of dense depth maps by utilising the projection proper-
ties of modern sensors to selectively search neighbour-
ing pixels. The key advantages of such an approach is
through the constant time access to potential neighbours
and we further show that the expected number of pix-
els examined for each kNN query is independent of the
total image size. While the proposed approach can be
adapted for various 3D sensors (Kinect-like, 3D LiDAR
etc.) with simple projection models, we demonstrate the
approach using stereo generated depth maps. Further-
more we show the k-nearest neighbour graph (KNNG)
constructed using this approach is suitable for spatial
clustering as shown in Fig. 1.

A key motivation for this work is in attempting
to bring various sophisticated segmentation algorithms
from the data mining community to robotics by address-
ing efficiency issues to meet real-time requirements. The
work presented here was developed without knowledge
of a similar approach described as OrganizedN eighbor
search in the point cloud library (PCL) [Rusu and
Cousins, 2011]. To the best of the author’s knowledge
a detailed analysis of the OrganizedNeighbor method
isn’t presented in any scientific publication. In this pa-
per we use our independently developed method PAN-
Search which is based on the same projection principles
as OrganizedNeighbor with the aim of highlighting sce-
narios where such an approach is advantageous over a
common tree based efficient search.

The paper is organised as follows: The next section
positions the proposed approach among existing works.
Depth maps and kNNG are described in section 3, while
section 4 details efficient kNNG construction. Section 5
describes how the kNNG is used for unsupervised seg-
mentation. Section 6 shows the performance of the pro-
posed method before a conclusion is given in section 7.

2 RELATED WORK

Unsupervised spatial clustering methods are used across
many disciplines, including computer vision, pattern
recognition, data mining and more recently robotics
[Klasing et al., 2008; Moosmann and Fraichard, 2010;
Bewley et al., 2011]. These methods are favourable as
they do not require prior knowledge of the number of
clusters in the scene and make no assumptions on the
shape or convexity of the clusters. One of the most com-
mon spatial clustering algorithms is DBSCAN [Ester et
al., 1996] which selects unvisited points at random to
begin growing a cluster by expanding along neighbour-
ing points according to a minimum local density cri-
teria. Defining a fixed minimum point density to con-

struct clusters from 3D sensor data such as in [Klasing
et al., 2008] can lead to over segmentation for distant
objects as point sparsity increases with increased dis-
tance from the sensor. Cluster methods based on kNN
graphs [Jarvis and Patrick, 1973; Ertoz et al., 2003;
Pauling et al., 2009] resolves this problem of finding
clusters with variable density by considering the mu-
tual neighbourhood between points. Typically, the most
computationally expensive step in these clustering meth-
ods is constructing the KNNG of the data. When the
input is large and dense, these approaches prohibit the
real-time performance required in robotic sensing.

The neighbourhood search problem has been exten-
sively studied with a large focus on algorithms that
can accommodate higher dimensional data and numer-
ous similarity metrics. Associating neighbouring pix-
els with neighbouring 3D points has been used in sur-
face normal estimation [Strom et al., 2010; Douillard
et al., 2011] based on the 4 and 8 connected neigh-
bourhood structures borrowed from the computer vi-
sion community[Felzenszwalb and Huttenlocher, 2004]
for segmenting image data. These methods do not ac-
count for scenarios where the nearest neighbours may
not be directly adjacent to the query point as common
in 3D data with noise. A more relevant subset of the
literature is concerned with closest point searching com-
monly associated to point cloud registration problems
[Jost and Hugli, 2003; Elseberg et al., 2012]. The ma-
jority of literature regarding efficient nearest neighbour
searching can be found in the pattern recognition and
data mining domains. The algorithms closely related
to this work can be categorised into: space partitioning
[Warnekar and Krishna, 1979; Nievergelt et al., 1984;
Meagher, 1982), data partitioning [Friedman et al., 1977;
Kolahdouzan and Shahabi, 2004; Freund et al., 2007,
or dimensionality reduction [Friedman et al., 1975;
Andoni et al., 2006; Connor and Kumar, 2009; Min et
al., 2010].

Space partitioning methods can be as simple as di-
viding the search space into a grid structure [Warnekar
and Krishna, 1979; Nievergelt et al., 1984] to enable
efficient constant time access to points binned into a
specific location bucket. These methods typically re-
quire an excessive amount of memory when high reso-
lution grids are used to minimise the number of points
in each bucket. Several memory efficient space partition-
ing methods based on octrees [Meagher, 1982] have been
proposed which have variable resolution based on local
point densities. These methods require prior knowledge
of the optimal partitioning resolution for efficient kNN
searching in non-uniform data density distributions.

The second category divides the search space along
partitions defined by points from the dataset. Binary
tree based methods such as the kd-tree are commonly
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used to recursively split the data along axial aligned
partitions with the median (for kd-trees [Friedman et
al., 1977] or bounding box (for R-trees [Guttman, 1984])
of each subset. This data structure allows for efficient
spatial querying by cutting down on the number of can-
didate points when traversing the tree. Many variants of
the kd-tree have been proposed to improve search times
to find approximate nearest neighbours (ANN) using
randomised trees [Arya et al., 1998] and random pro-
jections [Freund et al., 2007]. Other data defined par-
titioning methods construct a Voronoi representation of
the entire dataset [Kolahdouzan and Shahabi, 2004] or
recursive subsets in the form of a k-means tree [Nister
and Stewenius, 2006; Wang, 2011]. Muja and Lowe have
developed the fast library for approximate nearest neigh-
bours (FLANN) [Muja and Lowe, 2009] which selects
between a hierarchical k-means tree and randomised k-d
tree algorithm with automatic parameter optimisation,
dependent on the dataset. The authors reported an or-
der of magnitude speed improvement over other state-
of-the-art ANN search implementations and as a result
it is now part of several robotics related software pack-
ages'’2. In our experiments we use this implementation
as a basis of comparison in speed and precision.

The final category is dimensionality reduction based
search methods. The various tree based partitioning
methods listed above share the undesirable character-
istic that the number of partitions checked for each NN
query increases with the dataset size. Locality preserv-
ing functions can be used to evaluate a relative index into
the data structure which is derived from the query po-
sition, providing constant access time to each partition.
For example Connor and Kumar [Connor and Kumar,
2009] use the Morton Z-order which is synonymous to a
depth first search of an octree.

Instead of using tree-like data structures an increas-
ingly common form of dimensionality reduction is in the
use of hashing functions that transform the R? feature
vectors into a single binary value used as an index. Singh
and Singh [Singh and Singh, 2012] compute multiple two-
dimensional projections of higher dimensional data with
each projection relative to a different point before par-
titioning into a two dimensional grid of buckets. Lo-
cal sensitivity hashing (LSH) methods [Lv et al., 2007;
Andoni et al., 2006] map similar points to the same
bucket with high probability. These methods typically
require a substantial amount of memory and are better
suited to range queries.

These methods all require a form of preprocessing of
the data before performing nearest neighbour queries on
the dataset. In this paper we eliminate this step by ex-
ploiting the implicit structure in depth maps produced

"http:/ /www.ros.org/wiki/flann
2http://rock-robotics.org

by modern 3D sensors and propose an efficient projec-
tion based kNN search algorithm which does not scale
in search complexity with the dataset size.

3 Dense 3D Map and Graph
Representations

Recent approaches to real-time 3D segmentation utilis-
ing 2D lasers [Klasing et al., 2009] have inspired our work
in extending this concept to dense 2.5D depth maps.
Storing the depth data in a structured order correspond-
ing to the scan angle, enables efficient spatial access to
3D data, constrained by the perspective geometry of the
sensors. Fig. 2 shows the projection of a sphere (repre-
senting the upper limit of potential neighbours) onto the
image plane using a projective camera model applied to
the depth map.

A depth map is defined in this paper as a two di-
mensional grid of pixels such that each pixel represents
the spatial distance along the z-axis to a 3D point. Us-
ing a projective camera model the x and y coordinates
can be easily computed using the pixel’s depth and grid
location. By replacing the single depth value with the
corresponding 3D coordinate at each pixel location while
keeping the grid structure, we allow for efficient spatial
indexing as opposed to storing the point cloud as a sim-
ple list and then computing a k-d tree.

For the remainder of this paper we use the notation of
a single lower case character to represent a pixel index
or offset in the discrete grid space such as p € Z? while
upper case characters signify the corresponding 3D point
P € R3. The grid storing 3D points can be thought of
as a Z* — R? mapping function such that P = Z,,.(p).
Using this alternative representation has several desir-
able attributes for nearest neighbour searching, includ-
ing: the data is already organised into a grid as provided
by the sensor, the grid format enables constant time ran-
dom access to each cell, each grid cell maps to only a
single 3D point and the projective nature of the data
preserves 3D neighbourhoods in the 2D grid.

The kNNG construction problem can be defined as fol-
lows: given a set of n points where P; € R*{i =1...n},
construct a graph G = (V,£) where each vertex corre-
sponds to a pixel in the depth map and & is the set all
pairs & : (P, Pj),i # j such that P; is one of the k-
nearest neighbours of P;. A naive approach to finding
the k-nearest neighbours to a given point P;, is to search
over every other point P; keeping only the k points with
the shortest distance. Constructing a kNNG using this
approach has a time complexity of O(n?). Now that
these concepts have been introduced, we proceed to de-
scribe the PAN-Search algorithm.
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4 PAN-Search: Projected Area
Neighbourhood Searching

When dealing with dense depth maps as an input for
ENNG based clustering, the dense 3D map representa-
tion enables efficient neighbourhood searching regardless
of the input image size. In this section we present a sim-
ple search algorithm for finding kKNN in 3D metric space
for any given query point ) positioned at ¢ in the dense
3D map Z,y..

Algorithm 1 shows the key steps for finding the kNN
from a given location ¢ in the dense 3D map Z,,.. The
critical concept behind this algorithm is exploiting the
characteristic of projection models that the NN points
to @ are projected near to g in grid space. By initially
selecting k candidate neighbours the 3D search space
is bound to the kth closest point P shown in Fig. 2.
The grid cells covered by the projection of this boundary
are searched in an order designed to rapidly meet the
terminating criteria described below.

Algorithm 1 Projected Area Neighbourhood Searching

Input: Z,,. > each pixel is a 3D point
Input: ¢
Input: £
Input: f > focal length in pixels

Input: Search Strategy search_list
Output: kNN
1: function PAN-SEARCH(Zyy-, ¢, k, f, search_list)

3 for i =1 to ||search_list|| do

4 ro < |los]] > where o; is the pixel offset
5: P—Tyy.(q+0:)

6 de|P-Q|

7 kN N.insert(o:5,d, k)

8 if kNN.size() > k then

9: EN N.sort() > sort by d
10: kN N.pop() > remove largest d
11: Tmaz < update Boundary(kN Ny, Z,(q), f)
12: if (ro > Tmas) then return kNN
13: end if
14: end if

15: end for
16: end function

4.1 Image Search Pattern

The key to rapidly narrowing the search space is in the
order in which neighbouring pixels are visited to seek
the k closest points. The projection characteristic that
neighbouring points on an object’s surface are projected
to a neighbouring location in the grid space we can ef-
ficiently traverse radially outward from the given query
point gq. The efficiency of this approach is degraded as

Projected Search Space

3D Search Space

Camera Centre

Potential Neighbour Py
Query Point Q

Figure 2: Illustration of the projected image search space
from a sphere centred at the query point @) and radius of
|QPx|| where Py is the kth closest potential neighbouring
point found so far for Q.
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Figure 3: The index offsets for the first 20 candidate neigh-
bours the in the fixed search pattern. The colour intensity of
each node indicates the radial distance to the query position

q.

the query point approaches the boundary of an object.
As the ratio of boundary points to non-boundary points
is small with real world depth maps the overall effect of
boundary points is minimal.

The order in which neighbouring pixels are prioritised
is determined by their proximity to the query pixel q.
Fig 3 shows a potential sequence of index offsets to be
applied to ¢ in a radially growing search pattern. A
simple yet efficient search strategy is to sort the pixel
index offsets by their radius to the query pixel with an
arbitrary order selected for offsets with equivalent radius
in the image. This essentially forces points projected
closer in the grid space to be searched completely before
expanding the search radius. The sorting of these offsets
can be computed offline as this pattern is kept constant
and data independent for efficient online performance.
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4.2 Terminating Criteria

Once a minimum of k valid pixels are considered, any
point closer than Pj, would also need to lie in the pro-
jected search boundary. As closer points are discovered
using the radially expanding search pattern, the distance
from the query point @ to the kth closest point decreases,
contracting the projected search area towards ). The
search for kNN terminates when all pixels in the pro-
jected boundary with radius defined by the kth closest
point has been checked.

While the true perspective projection of a sphere into
the image plane casts an ellipse, we argue that a simple
approximation of a circle around ¢ as the image bound-
ary saves on complex computation while maintaining
reasonable precision in finding the true nearest neigh-
bours. The maximum radius of the projected search
boundary B, in grid space for a camera like sensor is
given by:

_QP:|.f
rmam - ‘QZ| (1)

where ||QPx|| is the radius of the bounding sphere, f
is the focal length in pixels and @, is the depth at q.
The terminating condition to finish the search is when
all pixels p € B, have been considered such that ||pg|| <
Tmaz (see line 11 and 12 of Algorithm 1).

Additionally a bailout condition can be set by limit-
ing the size of the search pattern to terminate the search
after a maximum number of pixel offsets are considered.
This bailout can be used to simultaneously identify out-
liers while capping the maximum time spent searching
for neighbours of outlier points.

Fig. 4 shows the relative number of pixels considered
at each point in the depth map (shown in Fig. 1) with
white pixels near object boundaries representing points
where the bailout condition was met before the projected
area could contract to the furthest offset in the search
pattern. As expected, pixels around object boundaries
take longer to compute compared to smooth continu-
ous surfaces as the initial candidate neighbourhood set
starts with points from both the foreground and back-
ground. Another interesting observation is that surfaces
with high gradients relative to the view point carry high
search cost while surfaces more parallel to the image
plane have low search cost.

4.3 Search Complexity

The performance of this algorithm in terms of time is
dependent on the data stored in the dense 3D map, with
a worst-case complexity of O(l), where [ is the maximum
length of our ordered search pattern. However with the
exception of occluded boundaries and discontinuities it
is expected that the physical proximity of a given point
is also proximal in the image grid space. Using a radially

Figure 4: Heat map of where pixels with high run-times are
located. The white (hottest) pixels coincide with the bailout
condition.

expanding search pattern, the expected run time is O(k)
for points on smooth surfaces as opposed to k-d tree
searching which is O(klog(n)) where 1 < k < n.

5 Spatial Clustering using a £INN
Graph

The ENNG can now be used as a basis for unsupervised
segmentation in a region growing framework that spa-
tially clusters the dense 3D input data. It is important to
note that the KNNG in this raw form is directional as the
kNN relationship is asymmetric, making the resulting
clusters dependent on the initial seeding. To overcome
this, we only expand a cluster along edges where both
vertices are mutual neighbours, effectively cutting asym-
metric edges. The resulting undirected graph enables
deterministic clustering results with randomly selected
seeds. For more details on this clustering method, the
reader is encouraged to refer to [Jarvis and Patrick, 1973;
Ertoz et al., 2003].

This form of clustering is aided with knowledge of ob-
ject boundaries discovered using the early bailout condi-
tion. As the resulting kNN points found up to the bailout
are not guaranteed, we consider the corresponding ver-
tex to be invalid and remove it from the graph. This not
only prevents clusters growing across invalid neighbour-
hood edges, but also aids the clustering, as these points
typically lie on an object’s boundary.

6 Experiments and Results

The proposed approach is evaluated by comparing the
speed and correctness against an efficient k-d tree im-
plementation. The k-d tree software used in this evalu-
ation is the OpenCV (version 2.4.3) implementation of
FLANN (version 1.6.11), which can also be found PCL
[Rusu and Cousins, 2011]. The k-d tree construction and
search parameters for FLANN are left as default in all
tests unless stated otherwise.

6.1 Datasets

We evaluate the performance of our system using 20
depth images derived from the ground truth disparity
maps of the 2006 Middlebury dataset [Scharstein and



Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

0.95r

o

o

a
T

Precision

0.8f —

0.751

T
1

0.7

FLANN (32) FLANN (64) PAN-Search

Figure 5: Average precision of 10 NN over 20 depth images
using ELAS on the KITTI Dataset.

Pal, 2007]. This dataset was selected as it contains var-
ious dense disparities at three difference resolution set-
tings. While this provides a convenient benchmark to
measure the speed performance for different input sizes
(shown in Fig. 6) it lacks spatial variety as all stereo
images are of indoor scenes or close objects. We address
this by additionally comparing the performance of the
proposed method using depth images generated from a
stereo vision system of an outdoor traffic scene. For this
we selected 20 frames of the KITTI dataset [Geiger et al.,
2012] from various sequences which contain several ob-
jects of potential interest such as cars and pedestrians.
The stereo image pairs were converted to dense depth
images using the Efficient LArge-scale Stereo (ELAS)
matching algorithm published in [Geiger et al., 2011]
along with the stereo parameters from [Geiger et al.,
2012]. An example of the depth image generated using
ELAS is shown in Fig. 1.

6.2 Correctness Evaluation

The precision of the proposed method is compared to
that of FLANN with default search parameters of 32
maximum checks per query and 64 maximum checks.
The results of applying these algorithms to the 20 depth
images from the KITTI dataset are shown in Fig. 5.
The exact nearest neighbours for each valid pixel were
found using a brute force linear search considering poten-
tial neighbours across the entire image. Precision here
is calculated as the number of points P € Qpn, with
|IPQI < ||P/.Q|l where P/ is the true kth nearest neigh-
bour from the brute force search. This experiment sup-
ports the projected circle approximation of the spherical
boundary to limit the search space in PAN-Search.
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Figure 6: Average kNN query time (k=10) for 20 images from
the Middlebury 2006 dataset using three different resolutions.
Best viewed in colour.

6.3 Timing

A prototype of the PAN-Search algorithm was imple-
mented in C++ and was deployed on a single core of a
2.2GHz Intel i7 processor with 8GB of RAM. OpenCV
2.43 was used for storing the neighbourhood graph as a
matrix while the priority_queue from the standard tem-
plate library is used for maintaining an ordered list of
nearest neighbours for kNN searching. The performance
of the proposed kNN graph construction algorithm was
compared to the OpenCV implementation of FLANN on
the same test computer.

Fig. 6 shows that PAN-Search’s kNN time is inde-
pendent of the total size of the input cloud as its search
space is defined by the local neighbourhood, which is ac-
cessible in constant time due to the grid structure of the
dense 3D image. The total time (in seconds) to construct
the kNN graph for 20 frames from the KITTI datasets is
shown in Fig. 7 where the value of k£ ranges from 1 to 20.
Our O(k) method outperforms FLANN with 32 and 64
checks on this dataset up to k = 14 and 20 respectively.
It is important to note that the recorded times is only
for kNN graph construction and doesn’t include the pre-
processing time to construct the internal k-d trees used
by FLANN. The k-d tree preprocessing took an average
of 0.5 and 2.2 seconds on the KITTI and full resolution
Middlebury datasets respectively.

7 Conclusion

In this paper we have shown a way of exploiting the
2.5D nature of dense depth maps by utilising the pro-
jection properties of modern sensor data to selectively

3http://opencv.org/
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Figure 7: Run time vs. k showing mean and standard devia-
tion for 20 frames from the KITTI traffic dataset. Note the
y-axis represent the total time to construct the kANNG over
an 0.5 Mega-pixel depth image.

search neighbouring pixels until no potential candidates
remain. This provides an alternative solution to effi-
ciently finding the k nearest neighbours to a set of given
query points from a dense depth map with known camera
projection matrix. This approach demonstrates a signif-
icant speed-up over common tree based search methods
as it maintains a constant search time per pixel regard-
less of image size. Furthermore we experimentally eval-
uate range of k values where this method outperforms
the ubiquitous k-d tree method. Additionally each kNN
query can be computed in parallel providing a further
speed-up on what is presented here. We believe that this
is an important step towards constructing kNN graphs
in real-time and ultimately real-time unsupervised seg-
mentation of dense 3D data. In future work we intend
on using other sources of information in addition to the
3D spatial location for constructing clusters based on the
kNN graph connectivity.
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ABSTRACT

This paper explores a pragmatic approach to multiple ob-
ject tracking where the main focus is to associate objects ef-
ficiently for online and realtime applications. To this end, de-
tection quality is identified as a key factor influencing track-
ing performance, where changing the detector can improve
tracking by up to 18.9%. Despite only using a rudimentary
combination of familiar techniques such as the Kalman Filter
and Hungarian algorithm for the tracking components, this
approach achieves an accuracy comparable to state-of-the-art
online trackers. Furthermore, due to the simplicity of our
tracking method, the tracker updates at a rate of 260 Hz which
is over 20x faster than other state-of-the-art trackers.

Index Terms— Computer Vision, Multiple Object Track-
ing, Detection, Data Association

1. INTRODUCTION

This paper presents a lean implementation of a tracking-by-
detection framework for the problem of multiple object track-
ing (MOT) where objects are detected each frame and repre-
sented as bounding boxes. In contrast to many batch based
tracking approaches [1, 2, 3], this work is primarily targeted
towards online tracking where only detections from the pre-
vious and the current frame are presented to the tracker. Ad-
ditionally, a strong emphasis is placed on efficiency for fa-
cilitating realtime tracking and to promote greater uptake in
applications such as pedestrian tracking for autonomous ve-
hicles.

The MOT problem can be viewed as a data associa-
tion problem where the aim is to associate detections across
frames in a video sequence. To aid the data association pro-
cess, trackers use various methods for modelling the motion
[1, 4] and appearance [5, 3] of objects in the scene. The
methods employed by this paper were motivated through
observations made on a recently established visual MOT
benchmark [6]. Firstly, there is a resurgence of mature data
association techniques including Multiple Hypothesis Track-
ing (MHT) [7, 3] and Joint Probabilistic Data Association
(JPDA) [2] which occupy many of the top positions of the
MOT benchmark. Secondly, the only tracker that does not
use the Aggregate Channel Filter (ACF) [8] detector is also
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Fig. 1. Benchmark performance of the proposed method
(SORT) in relation to several baseline trackers [6]. Each
marker indicates a trackers accuracy and speed measured in
frames per second (FPS) [Hz], i.e. higher and more right is
better.

the top ranked tracker, suggesting that detection quality could
be holding back the other trackers. Furthermore, the trade-off
between accuracy and speed appears quite pronounced, since
the speed of most accurate trackers is considered too slow for
realtime applications (see Fig. 1). With the prominence of
traditional data association techniques among the top online
and batch trackers along with the use of different detections
used by the top tracker, this work explores how simple MOT
can be and how well it can perform.

Keeping in line with Occam’s Razor, appearance features
beyond the detection component are ignored in tracking and
only the bounding box position and size are used for both mo-
tion estimation and data association. Furthermore, issues re-
garding short-term and long-term occlusion are also ignored,
as they occur very rarely and their explicit treatment intro-



duces undesirable complexity into the tracking framework.
We argue that incorporating complexity in the form of object
re-identification adds significant overhead into the tracking
framework — potentially limiting its use in realtime applica-
tions.

This design philosophy is in contrast to many proposed
visual trackers that incorporate a myriad of components to
handle various edge cases and detection errors [9, 10, 11, 12].
This work instead focuses on efficient and reliable handling of
the common frame-to-frame associations. Rather than aim-
ing to be robust to detection errors, we instead exploit re-
cent advances in visual object detection to solve the detec-
tion problem directly. This is demonstrated by comparing the
common ACF pedestrian detector [8] with a recent convolu-
tional neural network (CNN) based detector [13]. Addition-
ally, two classical yet extremely efficient methods, Kalman
filter [14] and Hungarian method [15], are employed to han-
dle the motion prediction and data association components of
the tracking problem respectively. This minimalistic formu-
lation of tracking facilitates both efficiency and reliability for
online tracking, see Fig. 1. In this paper, this approach is
only applied to tracking pedestrians in various environments,
however due to the flexibility of CNN based detectors [13], it
naturally can be generalized to other objects classes.

The main contributions of this paper are:

o We leverage the power of CNN based detection in the

context of MOT.

e A pragmatic tracking approach based on the Kalman
filter and the Hungarian algorithm is presented and
evaluated on a recent MOT benchmark.

e Code will be open sourced to help establish a baseline
method for research experimentation and uptake in col-
lision avoidance applications.

This paper is organised as follows: Section 2 provides a
short review of related literature in the area of multiple ob-
ject tracking. Section 3 describes the proposed lean tracking
framework before the effectiveness of the proposed frame-
work on standard benchmark sequences is demonstrated in
Section 4. Finally, Section 5 provides a summary of the learnt
outcomes and discusses future improvements.

2. LITERATURE REVIEW

Traditionally MOT has been solved using Multiple Hypothe-
sis Tracking (MHT) [7] or the Joint Probabilistic Data Associ-
ation (JPDA) filters [16, 2], which delay making difficult de-
cisions while there is high uncertainty over the object assign-
ments. The combinatorial complexity of these approaches is
exponential in the number of tracked objects making them
impractical for realtime applications in highly dynamic envi-
ronments. Recently, Rezatofighi et al. [2], revisited the JPDA
formulation [16] in visual MOT with the goal to address the
combinatorial complexity issue with an efficient approxima-
tion of the JPDA by exploiting recent developments in solv-

ing integer programs. Similarly, Kim et al. [3] used an ap-
pearance model for each target to prune the MHT graph to
achieve state-of-the-art performance. However, these meth-
ods still delay the decision making which makes them unsuit-
able for online tracking.

Many online tracking methods aim to build appearance
models of either the individual objects themselves [17, 18, 12]
or a global model [19, 11, 4, 5] through online learning. In ad-
dition to appearance models, motion is often incorporated to
assist associating detections to tracklets [1, 19, 4, 11]. When
considering only one-to-one correspondences modelled as bi-
partite graph matching, globally optimal solutions such as the
Hungarian algorithm [15] can be used [10, 20].

The method by Geiger et al. [20] uses the Hungarian algo-
rithm [15] in a two stage process. First, tracklets are formed
by associating detections across adjacent frames where both
geometry and appearance cues are combined to form the affin-
ity matrix. Then, the tracklets are associated to each other to
bridge broken trajectories caused by occlusion, again using
both geometry and appearance cues. This two step associa-
tion method restricts this approach to batch computation. Our
approach is inspired by the tracking component of [20], how-
ever we simplify the association to a single stage with basic
cues as described in the next section.

3. METHODOLOGY

The proposed method is described by the key components of
detection, propagating object states into future frames, asso-
ciating current detections with existing objects, and managing
the lifespan of tracked objects.

3.1. Detection

To capitalise on the rapid advancement of CNN based de-
tection, we utilise the Faster Region CNN (FrRCNN) detec-
tion framework [13]. FrRCNN is an end-to-end framework
that consists of two stages. The first stage extracts features
and proposes regions for the second stage which then clas-
sifies the object in the proposed region. The advantage of
this framework is that parameters are shared between the two
stages creating an efficient framework for detection. Addi-
tionally, the network architecture itself can be swapped to any
design which enables rapid experimentation of different ar-
chitectures to improve the detection performance.

Here we compare two network architectures provided
with FrRCNN, namely the architecture of Zeiler and Fer-
gus (FrRCNN(ZF)) [21] and the deeper architecture of Si-
monyan and Zisserman (FrRCNN(VGG16)) [22]. Through-
out this work, we apply the FrRCNN with default parameters
learnt for the PASCAL VOC challenge. As we are only inter-
ested in pedestrians we ignore all other classes and only pass
person detection results with output probabilities greater than
50% to the tracking framework.



Table 1. Comparison of tracking performance by switching
the detector component. Evaluated on Validation sequences
as listed in [12].

Tracker Detector Detection Tracking
Recall Precision IDSw MOTA
ACF 36.6 75.8 222 24.0
MDP [12] FrRCNN(ZF) 46.2 67.2 245 22.6
FrRCNN(VGG16)  50.1 76.0 178 335
ACF 33.6 65.7 224 15.1
Proposed  FrRCNN(ZF) 41.3 72.4 347 24.0

FrRCNN(VGG16)  49.5 77.5 274 34.0

In our experiments, we found that the detection quality
has a significant impact on tracking performance when com-
paring the FrRCNN detections to ACF detections. This
is demonstrated using a validation set of sequences ap-
plied to both an existing online tracker MDP [12] and the
tracker proposed here. Table 1 shows that the best detector
(FrRCNN(VGG16)) leads to the best tracking accuracy for
both MDP and the proposed method.

3.2. Estimation Model

Here we describe the object model, i.e. the representation and
the motion model used to propagate a target’s identity into the
next frame. We approximate the inter-frame displacements of
each object with a linear constant velocity model which is
independent of other objects and camera motion. The state of
each target is modelled as:

X = [u,v,sw,a,@,s’]T,

where v and v represent the horizontal and vertical pixel loca-
tion of the centre of the target, while the scale s and r repre-
sent the scale (area) and the aspect ratio of the target’s bound-
ing box respectively. Note that the aspect ratio is considered
to be constant. When a detection is associated to a target, the
detected bounding box is used to update the target state where
the velocity components are solved optimally via a Kalman
filter framework [14]. If no detection is associated to the tar-
get, its state is simply predicted without correction using the
linear velocity model.

3.3. Data Association

In assigning detections to existing targets, each target’s
bounding box geometry is estimated by predicting its new
location in the current frame. The assignment cost matrix is
then computed as the intersection-over-union (IOU) distance
between each detection and all predicted bounding boxes
from the existing targets. The assignment is solved optimally
using the Hungarian algorithm. Additionally, a minimum
IOU is imposed to reject assignments where the detection to
target overlap is less than 1OU,,,;,.

We found that the IOU distance of the bounding boxes
implicitly handles short term occlusion caused by passing tar-
gets. Specifically, when a target is covered by an occluding
object, only the occluder is detected, since the IOU distance
appropriately favours detections with similar scale. This al-
lows both the occluder target to be corrected with the detec-
tion while the covered target is unaffected as no assignment
is made.

3.4. Creation and Deletion of Track Identities

When objects enter and leave the image, unique identities
need to be created or destroyed accordingly. For creating
trackers, we consider any detection with an overlap less than
10U, ,;n, to signify the existence of an untracked object. The
tracker is initialised using the geometry of the bounding box
with the velocity set to zero. Since the velocity is unobserved
at this point the covariance of the velocity component is ini-
tialised with large values, reflecting this uncertainty. Addi-
tionally, the new tracker then undergoes a probationary pe-
riod where the target needs to be associated with detections to
accumulate enough evidence in order to prevent tracking of
false positives.

Tracks are terminated if they are not detected for 77t
frames. This prevents an unbounded growth in the number
of trackers and localisation errors caused by predictions over
long durations without corrections from the detector. In all
experiments 77,5 is set to 1 for two reasons. Firstly, the con-
stant velocity model is a poor predictor of the true dynamics
and secondly we are primarily concerned with frame-to-frame
tracking where object re-identification is beyond the scope of
this work. Additionally, early deletion of lost targets aids ef-
ficiency. Should an object reappear, tracking will implicitly
resume under a new identity.

4. EXPERIMENTS

We evaluate the performance of our tracking implementa-
tion on a diverse set of testing sequences as set by the MOT
benchmark database [6] which contains both moving and
static camera sequences. For tuning the initial Kalman fil-
ter covariances, IOU,,;n, and Tr,s; parameters, we use the
same training/validation split as reported in [12]. The detec-
tion architecture used is the FrRCNN(VGG16) [22].

4.1. Metrics

Since it is difficult to use one single score to evaluate multi-
target tracking performance, we utilise the evaluation metrics
defined in [24], along with the standard MOT metrics [25]:

e MOTA(T): Multi-object tracking accuracy [25].

e MOTP(1): Multi-object tracking precision [25].

e FAF(]): number of false alarms per frame.



Table 2. Performance of the proposed approach on MOT benchmark sequences [6].

Test Sequences ‘ MOTAT MOTPT FAF| MTY ML FP| FN| IDsw| Frag|
TBD [20] Batch 15.9 70.9 2.6% 64% 479% 14943 34777 1939 1963
ALEXTRAC [5] Batch 17.0 71.2 1.6% 39% 52.4% 9233 39933 1859 1872
DP_NMS [23] Batch 14.5 70.8 23% 6.0% 40.8% 13171 34814 4537 3090
SMOT [1] Batch 18.2 71.2 1.5% 2.8% 54.8% 8780 40310 1148 2132
NOMT [11] Batch 33.7 71.9 1.3% 122% 44.0% 7762 32547 442 823
RMOT [4] Online 18.6 69.6 22%  53% 533% 12473 36835 684 1282
TC_ODAL [17] Online 15.1 70.5 22%  32%  55.8% 12970 38538 637 1716
TDAM [18] Online 33.0 72.8 1.7% 13.3% 39.1% 10064 30617 464 1506
MDP [12] Online 30.3 71.3 1.7% 13.0% 38.4% 9717 32422 680 1500
SORT (Proposed)  Online 334 72.1 13% 11.7% 309% 7318 32615 1001 1764

e MT(1): number of mostly tracked trajectories. L.e. tar-
get has the same label for at least 80% of its life span.
e ML(]): number of mostly lost trajectories. i.e. target is
not tracked for at least 20% of its life span.
e FP(]): number of false detections.
e FN(|): number of missed detections.
e ID sw({): number of times an ID switches to a different
previously tracked object [24].
e Frag(]): number of fragmentations where a track is in-
terrupted by miss detection.
Evaluation measures with (1), higher scores denote better
performance; while for evaluation measures with (), lower
scores denote better performance. True positives are con-
sidered to have at least 50% overlap with the corresponding
ground truth bounding box. Evaluation codes were down-
loaded from [6].

4.2. Performance Evaluation

Tracking performance is evaluated using the MOT benchmark
[6] test server where the ground truth for 11 sequences is with-
held. Table 2 compares the proposed method SORT with sev-
eral other baseline trackers. For brevity, only the most rel-
evant trackers, which are state-of-the-art online trackers in
terms of accuracy, such as (TDAM [18], MDP [12]), the
fastest batch based tracker (DP_NMS [23]), and all round
near online method (NOMT [11]) are listed. Additionally,
methods which inspired this approach (TBD [20], ALEx-
TRAC [5], and SMOT [1]) are also listed. Compared to
these other methods, SORT achieves the highest MOTA score
for the online trackers and is comparable to the state-of-the-
art method NOMT which is significantly more complex and
uses frames in the near future. Additionally, as SORT aims to
focus on frame-to-frame associations the number of lost tar-
gets (ML) is minimal despite having similar false negatives to
other trackers. Furthermore, since SORT focuses on frame-
to-frame associations to grow tracklets, it has the lowest num-
ber of lost targets by a considerable margin in comparison to
the other methods.

4.3. Runtime

Most MOT solutions aim to push performance towards
greater accuracy, often, at the cost of runtime performance.
While slow runtime may be tolerated in offline processing
tasks, for robotics and autonomous vehicles, realtime perfor-
mance is essential. Fig. 1 shows a number of trackers on
the MOT benchmark [6] in relation to both their speed and
accuracy. This shows that methods which achieve the best ac-
curacy also tend to be the slowest (bottom right in Figure 1).
On the opposite end of the spectrum the fastest methods tend
to have lower accuracy (top left corner in Figure 1). SORT
combines the two desirable properties, speed and accuracy,
without the typical drawbacks (top right in Figure 1). The
tracking component runs at 260 Hz on single core of an Intel
i7 2.5GHz machine with 16 GB memory.

5. CONCLUSION

In this paper, a simple online tracking framework is presented
that focuses on frame-to-frame prediction and association.
We showed that the tracking quality is very dependent on
detection performance and by capitalising on recent devel-
opments in detection, state-of-the-art tracking quality can be
achieved with only classical tracking methods. The presented
framework achieves best in class performance with respect
to both speed and accuracy, while other methods typically
sacrifice one for the other. The simplicity of the presented
framework makes it well suited as a baseline, allowing for
new methods to focus on object re-identification to handle
long term occlusion. As our experimentation has highlighted
the importance of detection quality, future work will investi-
gate a tightly coupled tracking and detection framework.
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Appendix C

Postface

Shortly after submitting this dissertation for examination, a number of collaborative works were
published following along the directions indicated in the future work (Section [6.2]). These
include: training a feature encoder to be invariant to appearance changes in the operating
environment [Wulfmeier et al., |2017], switching detector models to suit the background of
the operating environment [Hawke et al.,|2017]], training a feature encoder for the task of asso-
ciation in tracking [Wojke et al., 2017]], and learning a tracker model which jointly incorporates
appearance and motion while also suppressing background distractors [Kosiorek et al., [2017]].
The remainder of this section briefly discusses the relation to avenues for future work (Section
[6.2)) while the reader should refer to the corresponding reference for self-contained detail of the

proposed method.

Firstly, the work presented in [Wulfmeier et al., 2017] describes a technique for training
a better feature extractor from limited training data through the use of adversarial learning
[Goodfellow et al., 2014]]. Here vast amounts of unlabelled data with various conditions causing
changes in appearance can be modelled and aligned to the distribution of the labelled data. This
facilitated the use of a trained classifier across all domains, demonstrating improved perfor-

mance in free space segmentation across day, overcast and night conditions.

In [Hawke et al., 2017], a place specific object detector was demonstrated to out perform
a recent approach by exploiting local background appearance. This follows a similar
direction as suggested with the adaptive background model where different models could be
employed in different regions of the operational environment to overcome and adapt to known

background distractors. This approach is very applicable to autonomous vehicles frequently
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traversing the same route experiencing common distractors such as a truck travelling between a

shovel and dump site.

On the tracking front, the simple position based tracker presented in Appendix [B] was
extended to use appearance information to recover from miss detections and reduce fragmen-
tation caused by drastic changes in appearance [Wojke et al., 2017]. This was achieved by
going beyond affinity learning (restricted to working with fixed features) by optimising a whole
network feature extractor for re-identification. Here the network output was constrained to
model cosine similarity corresponding to the initial affinity metric used in Chapter [5] but the

lower layers are fine-tuned to capture instance specific detail resulting in improved tracking.

Finally, Kosiorek et al.|[2017] implicitly combines both appearance and position informa-
tion into a unified tracking framework inspired by the attention mechanisms in human per-
ception. This approach proposes a novel network architecture making use of recurrent layers,
different forms of attention and the recently proposed dynamic filters [De Brabandere et al.,
2016[]. Recurrent layers within this architecture are able to caption specific detail of a target

object and learn to adapt its filters to suppress distracting stimuli in the next frame.

Overall these works focus on the problem of learning better features for their associated
task with invariance to appearance changed caused by environmental conditions and sudden
changes. Additionally, the notion of adapting to changes in appearance of the background or
the object itself were also explored. Together these works demonstrate the continued efforts
towards effective and reliable use of computer vision in dynamic environments with minimal

supervision, thus further extending the frontier of research pursued in this thesis.
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