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ABSTRACT

We propose a novel method to improve fine-grained bird
species classification based on hierarchical subset learning.
We first form a similarity tree where classes with strong vi-
sual correlations are grouped into subsets. An expert local
classifier with strong discriminative power to distinguish vi-
sually similar classes is then learnt for each subset. On the
challenging Caltech200-2011 bird dataset we show that using
the hierarchical approach with features derived from a deep
convolutional neural network leads to the average accuracy
improving from 64.5% to 72.7%, a relative improvement of
12.7%.

Index Terms— fine-grained classification, subset cluster-

ing

1. INTRODUCTION

Fine-grained image classification is a challenging computer
vision problem. Distinct from general object classification
which aims to find the correct overall category such as a bird
or dog, fine-grained image classification aims to identify the
particular sub-category of a given category [1, 13, 14]. As
an example, for an overall category of bird we wish to dis-
criminate between various sub-categories with similar appear-
ance, as shown in Fig. 1. In fact, bird classification is an
area of particular interest within fine-grained image classifi-
cation [3, 5, 7, 8].

Recent work in bird classification has concentrated on the
issues of pose and view-point variation by finding local parts
or extracting normalised features. Several authors have exam-
ined ways in which locating the parts of the birds (and other
animals) can be used to improve classification [4, 5, 14]. Ex-
tracting pose-normalised features has been another popular
approach [18] and is the basis for the deep convolutional bird
classification system of Donahue et al. [6].

Aside from the issue of pose and view-point changes,
a major challenge for any fine-grained classification approach
is how to distinguish between classes that have high visual
correlations. In Fig. 1 it can be seen that the hooded oriole
and baltimore oriole species are visually very similar, but can
be easily differentiated from the black throate species. This
visual similarity was exploited by Berg and Belhumeur [2]
to build a similarity tree that divides visually similar classes
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Fig. 1: One subset of the similarity tree of Berg and Bel-
humeur [2], built from the visual similarity matrix based on
part-based one-vs-one features [3]. Species from the same
node (eg. oriole) appear very similar to each other in terms of
overall color and texture.

into subsets, which in turn was used to help derive a vi-
sual field guide. However, the application of the similarity
tree to automatic classification for bird images has not been
explored.

Inspired by the similarity tree of Berg and Belhumeur, we
propose a hierarchical approach for fine-grained image classi-
fication. Our hierarchical approach begins by clustering visu-
ally similar classes before learning separate expert local clas-
sifiers which focus on discriminating the similar classes.

As a baseline for bird classification, we use the recently
proposed deep convolutional feature approach of Donahue et
al. [6]. This approach first performs part detection and pose
normalisation, followed by extracting local features. The part
detection and pose normalisation is achieved by using the de-
formable part descriptors model [18] on local parts which
have been extracted using a pre-trained deep convolutional
neural network (DCNN) learned from ImageNet [12]. Fea-
tures obtained from the 6-th layer (fc-6) of the DCNN are
used which are then classified using a linear regression ap-
proach.

The paper is continued as follows. In Section 2 we present
our proposed hierarchical classification system in detail. Sec-
tion 3 is devoted to a comparative evaluation with several re-
cent methods on the task of fine-grained bird classification.
Conclusions and possible future avenues of research are given
in Section 4.
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2. PROPOSED HIERARCHICAL CLASSIFICATION

Our proposed approach to hierarchical fine-grained image
classification consists of two steps. First, the system per-
forms a coarse classification to assign the test sample to the
most likely subset &k using a subset selector. Each subset con-
sists of visually similar species; the subsets are automatically
generated using a similarity tree. Secondly, if the confidence
of the subset selector is sufficiently high, for each chosen sub-
set k, fine-grained classification is performed using a local
classifier LocalSVMy.. Each LocalSVM;. has been trained to
differentiate between the visually similar species belonging to
this subset. If the confidence is low, a one-vs-all GlobalSVM
classifier is used. An overview of the system can be seen in
Fig. 2. The details of each component are explained in the
following subsections.

2.1. Automatically Obtaining the Similarity Tree

There are two main issues with using the similarity tree of
Berg and Belhumeur [2] to derive our hierarchical structure.
First, it has a deep hierarchical structure of up to 17 layers
and in this work we wish to explore the potential for a shal-
low structure of just 2 layers. Second, we want to generate
the hierarchical structure in a fully automatic manner. In con-
trast, the similarity tree in [2] is learned from features ob-
tained from manual part annotation which may not always be
possible or desirable.

Our aim is to derive a similarity tree that groups all of the
J; samples of class 7 to the same subset (cluster), as well as
grouping together similar classes. To do this we first obtain
discriminant features by applying linear discriminant analysis
(LDA) [15] to DCNN-based features (see Section 3 for more
details). We use discriminant features as they will aid in hav-
ing samples from the same class being assigned to the same
subset (cluster). Using these discriminant features we then
learn the similarity tree by performing k-means clustering.

An issue with this automatically derived similarity tree is
that not all of the samples from a class are assigned to just
one cluster (subset). To deal with this issue we use the re-
sult of k-means as an initial split of classes into subsets. We
then determine the subset s, which contains the majority of
its samples for each class ¢ and declare this as being the subset
responsible for that class. Using this assignment of classes to
subsets, we then learn a discriminative subset selector so that
we can more accurately assign a sample to its correct subset.

2.2. Subset Selectors

We train a discriminative subset selector to minimise the num-
ber of mis-assignments of species to its subset. The k-th sub-
set is assigned I}, classes, and so the subset selector Selectory,
is trained to correctly assign all the samples from these Iy,
classes. The positive samples to train the subset selector con-
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Fig. 2: An overview of the proposed hybrid system (the
green stars are test samples for class A). A test image is first
coarsely classified into a subset, and receives a confidence
on the classification. If the confidence is higher than a pre-
defined threshold, a local classifier LocalSVM specific to the
chosen subset is used to make the final decision. Otherwise,
a one-vs-all SVM (termed GlobalSVM) is used to make the
decision.

sist of all the training samples for the [, classes and the neg-
ative samples are the remaining training samples.

In total, K subset selectors Selector;. i are trained, one
for each subset of the hierarchical structure. These subset se-
lectors are trained using a probabilistic SVM as this provides
the probability that a sample belongs to a particular subset.
This allows us to mitigate potential errors by incorporating
this knowledge in the next step.

2.3. Local Expert Classifier Learning

Let S = {sx}i—, denote the K subsets learned by the hi-
erarchical clustering. An expert classifier (SVM) is then
learned for each subset s;, which we term LocalSVM;,. Each
LocalSVM;, is a linear multi-class SVM. This is different
to the classical one-versus-all approach because only the
I}, classes assigned to the subset are used to train each Lo-
calSVM.



2.4. Hybrid Decision System

The accuracy of the proposed system is dependent on the ac-
curacy of the assignment of a test sample to the correct subset
of our hierarchy. If the wrong subset is chosen then we have
no way to recover and a mis-classification will occur. To al-
leviate this issue, we present a hybrid decision system which
makes use of the classical global classifier, GlobalSVM, as
well as our local classifier, LocalSVM.

Our hybrid decision system makes use of the probabil-
ity from the subset selector to combine GlobalSVM and the
LocalSVM. 1t uses the locally trained classifier (LocalSVM};)
only when the confidence of the subset selector is greater than
a pre-defined threshold 7. In all other cases the classical Glob-
alSVM trained with all birds species is used to make the clas-
sification decision.

3. EXPERIMENTS

We evaluate our approach on the Caltech birds dataset
(CUB200-2011) [17]. It contains 11,788 images from 200
bird species in North America. Each species has approxi-
mately 30 images for training and 30 for testing. Each image
comes with an annotated bounding box around the object of
interest (the bird), as well as annotations for many constituent
parts of the object.

The feature vectors that we use throughout our experi-
ments are the DCNN features (DeCAF) trained from Ima-
geNet [12]. We fine-tune these features, using Caffe [10],
for the task of bird classification by replacing the final out-
put layer (for the 1, 000 classes of ImageNet) with a 200 class
layer for bird species. We then retrain the entire network us-
ing the training samples for the 200 bird classes with a learn-
ing rate of 0.01'.

The experiments are divided into two parts: (i) perfor-
mance of the proposed hierarchical approach for varying
number of subsets, and (ii) performance comparison of the
proposed system against several recent algorithms. Based on
preliminary experiments, the threshold for confidence of the
subset selector is set to 7 = 0.98 for all experiments.

We first evaluate the performance of the proposed system
by varying the number of subsets K = [2,3,...,25]. The
results are presented in Fig. 3, along with the performance of
the baseline system DPD-DeCAF [6]. The performance of
the proposed system generally increases until X = 8, reach-
ing 72.7%. For higher values of K (ie. more subsets), the
performance tends to decrease in a non-monotonic manner,
indicating that relatively large values of K are not necessarily
helpful. A visualisation of the classes assigned to each subset
is given in Fig. 4.

Comparisons against other methods are shown in Tables 1
and 2. In Table 1 parts annotations are exploited, while in Ta-

IThis rate decreases by a factor of 10 every 5, 000 iterations for a total of
20, 000 iterations.
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Fig. 3: Performance of the proposed method on the Caltech-
UCSD CUB200-2011 bird dataset, while exploting part an-
notations. The number of subsets (K) is varied from 2 to 25.
The subsets are selected automatically. Performance of the
baseline system DPD-DeCAF [6] is also shown.

Table 1: Accuracy of various systems on the Caltech-UCSD
CUB200-2011 bird dataset, exploiting part annotations.

Method Accuracy
Pooling feature learning [11] 38.9%
Symbiotic Model [5] 59.4%
POOF [3] 56.9%
Part transfer [9] 57.8%
DPD-DeCAF [6] 64.5%
Proposed method (automatic subsets, K=8) 72.7 %
Proposed method (ground truth subsets, K=8) 78.6%

Table 2: As per Table 1, but instead of using part annotations,
only bounding box information is used.

Method Accuracy
Bounding Box [16] 53.3%
Bounding Box-aug [16] 61.8%
Proposed method (automatic subsets, K=14) 68.6 %

ble 2 only bounding boxes are used. It can be seen that in Ta-
ble 1 the proposed method (using the optimal K = 8) leads to
a relative performance improvement of 12.7% over the base-
line DPD-DeCAF system. When ground-truth labels are used
for the subset selector, the proposed system can increase its
performance from 72.7% to 78.6%. This indicates that if the
performance of the subset selector can be improved, we can
further improve the performance of the overall system.

In Table 2, where only bounding boxes are used in-
stead of parts annotations, the best performance by the pro-
posed method is obtained at X' = 14. The proposed method
achieves an accuracy of 69.2% compared to 61.8% obtained
by a convolutional neural network method presented in [16],
resulting in a relative performance improvement of 12.0%.
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Fig. 4: Example images of 10 classes for each of the subsets for the best performing system (K = 8). It can be seen that the

classes assigned to each subset are visually similar.

4. CONCLUSION

In this paper, we have introduced a novel direction to tackle
the problem of fine-grained classification. We have proposed
the use of a hierarchical classifier so that classes that have
high visual correlations are grouped together into the same
subsets. An expert classifier is then learnt for each subset.

The novel hybrid hierarchical classification system yields
performance improvements over the recent deep convolu-
tional neural network system proposed in [6]. This hybrid
approach combines the classical GlobalSVM classification
approach with a novel LocalSVM classification approach.
Evaluations on the challenging CUB200-2011 dataset [17]
show that classification accuracy for a fully automatic system
can be increased from 64.5% to 72.7%, a relative improve-
ment of 12.7%.

Future work will examine ways to close the gap between
the performance of the automatic system and the performance
of the ground truth system. The ground truth (assigning all
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test samples to their correct subset) achieves a classifica-
tion accuracy of 78.6%, which is considerably better than
the 72.7% of the fully automatic system. This implies that
performing more accurate assignment of a sample to its sub-
set can yield considerable performance improvements. One
possible approach to obtain more accurate assignment would
be to learn visual features that best differentiate the subsets
rather than all of the classes.
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